Home

Awesome

AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization (IEEE TASE 2024)

PyTorch implementation and for TASE2024 paper, AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization.
这是图片

Download Weights of MVTec AD Dataset

ClassPre-trained CheckpointMetric (I-AUROC,P-AUROC,I-AP,P-AP)
Bottledownload(1.0, 0.988, 1.0, 0.792)
Cabledownload(0.996, 0.986, 0.998, 0.685)
Capsuledownload(0.984, 0.989, 0.997, 0.45)
Carpetdownload(0.998, 0.993, 0.999, 0.69)
Griddownload(0.999, 0.989, 1.0, 0.378)
Hazelnutdownload(1.0, 0.986, 1.0, 0.567)
Leatherdownload(1.0, 0.994, 1.0, 0.486
Metal nutdownload(0.995, 0.966, 0.999, 0.672)
Pilldownload(0.966, 0.983, 0.994, 0.697)
Screwdownload(0.978, 0.994, 0.993, 0.369)
Tiledownload(0.999, 0.962, 1.0, 0.552)
Toothbrushdownload(0.958, 0.989, 0.984, 0.519)
Transistordownload(1.0, 0.981, 1.0, 0.771)
Wooddownload(0.993, 0.953, 0.998, 0.478)
Zipperdownload(0.986, 0.985, 0.996, 0.53)

Download Datasets

Please download MVTecAD dataset from MVTecAD dataset and BTAD dataset from BTAD dataset.

Installation

timm==0.3.2
pytoch==1.8.1

Citation

If you find this repository useful, please consider citing our work:

@article{luo2024ami,    
  title={AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization},  
  author={Luo, Wei and Yao, Haiming and Yu, Wenyong and Li, Zhengyong},  
  journal={IEEE Transactions on Automation Science and Engineering},  
  year={2024},  
  publisher={IEEE}  
}