Home

Awesome

ESRT

Efficient Transformer for Single Image Super-Resolution

Update

#######22.03.17########

The result images of our method are collected in fold "/result".

Environment

Model

<p align="center"> <img src="figs/esrt.png" width="960"> <br /> <em> The overall architecture of the proposed Efficient SR Transformer (ESRT). </em> </p> <p align="center"> <img src="figs/EMHA.png" width="960"> <br /> <em> Efficient Transformer and Efficient Multi-Head Attention. </em> </p>

Train

python train.py --scale 2 --patch_size 96
python train.py --scale 3 --patch_size 144
python train.py --scale 4 --patch_size 192

If you want a better result, use 128/192/256 patch_size for each scale.

Test

Example:

python test.py --is_y --test_hr_folder dataset/benchmark/B100/HR/ --test_lr_folder dataset/benchmark/B100/LR_bicubic/X4/ --output_folder results/B100/x4 --checkpoint experiment/checkpoint/x4/epoch_990.pth --upscale_factor 4

Visual comparison

<p align="center"> <img src="figs/visual images-v2.png" width="960"> <br /> <em> The visual comparison. </em> </p>