Awesome
<img src=".github/Detectron2-Logo-Horz.svg" width="300" >This Repo
- Implementation of maskscoring RCNN based on Detectron2
- We use this implementation in centermask
- Insert MASKIOU_ON in your config file as follows:
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
MASKIOU_ON: True
RESNETS:
DEPTH: 50
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark.
<div align="center"> <img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/> </div>What's New
- It is powered by the PyTorch deep learning framework.
- Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
- Can be used as a library to support different projects on top of it. We'll open source more research projects in this way.
- It trains much faster.
See our blog post to see more demos and learn about detectron2.
Installation
See INSTALL.md.
Quick Start
See GETTING_STARTED.md, or the Colab Notebook.
Learn more at our documentation. And see projects/ for some projects that are built on top of detectron2.
Model Zoo and Baselines
We provide a large set of baseline results and trained models available for download in the Detectron2 Model Zoo.
License
Detectron2 is released under the Apache 2.0 license.
Citing Detectron
If you use Detectron2 in your research or wish to refer to the baseline results published in the Model Zoo, please use the following BibTeX entry.
@misc{wu2019detectron2,
author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
Wan-Yen Lo and Ross Girshick},
title = {Detectron2},
howpublished = {\url{https://github.com/facebookresearch/detectron2}},
year = {2019}
}