Awesome
DSTA-Net
Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action-Gesture Recognition in ACCV2020
Result
A little different with paper due the reimplementation.
- NTU-60-CS: ~91.8%
- SHREC-14: ~97.2%
Data Preparation
- SHREC
- Download the SHREC data from http://www-rech.telecom-lille.fr/shrec2017-hand/
- Generate the train/test splits with
python prepare/shrec/gendata.py
- DHG
- Download the DHG data from the http://www-rech.telecom-lille.fr/DHGdataset/
- Generate the train/test splits with
python prepare/dhg/gendata.py
- NTU-60
- Download the NTU-60 data from the https://github.com/shahroudy/NTURGB-D
- Generate the train/test splits with
python prepare/ntu_60/gendata.py
- NTU-120
- Download the NTU-120 data from the https://github.com/shahroudy/NTURGB-D
- Generate the train/test splits with
python prepare/ntu_120/gendata.py
- Note
- You can check the raw/generated skeletons through the function
view_raw/generated_skeletons_and_images()
for NTU and functionske_vis()
for dhg/shrec in gendata.py
- You can check the raw/generated skeletons through the function
Training & Testing
Change the config file depending on what you want.
`python train_val_test/train.py --config ./config/shrec/shrec_dstanet_14.yaml`
Train with decoupled modalities by changing the 'num_skip_frame'(None to 1 or 2) option and 'decouple_spatial'(False to True) option in config file and train again.
Then combine the generated scores with:
`python train_val_test/ensemble.py`
Citation
Please cite the following paper if you use this repository in your reseach.
@inproceedings{dstanet_accv2020,
title = {Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action-Gesture Recognition},
author = {Lei Shi and Yifan Zhang and Jian Cheng and Hanqing Lu},
booktitle = {ACCV},
year = {2020},
}
Contact
For any questions, feel free to contact: lei.shi@nlpr.ia.ac.cn