Awesome
GRIN: Generative Relation and Intention Network for Multi-agent Trajectory Prediction
Official Implementation of Generative Relation and Intention Network (GRIN) in PyTorch and DGL.
Dependencies
- torch==1.8.1
- numpy==1.19.2
- scipy==1.6.1
- dgl_cu110==0.6.1
- dgl==0.6.1
- tensorboardX==2.2
Running the code
-
Install all dependencies mentioned above
-
Generate charged dataset for training (NBA dataset is available on [44])
python simulator.py --seed 0 --num_sample 5000 --filename train.npz
python simulator.py --seed 1 --num_sample 1000 --filename test.npz
python simulator.py --seed 2 --num_sample 1000 --filename valid.npz
- Train the model
bash train.sh
- Evaluate the model
bash eval.sh