Awesome
RoIAlign for PyTorch
This is a PyTorch version of RoIAlign.
This implementation is based on crop_and_resize
and supports both forward and backward on CPU and GPU.
NOTE: Thanks meikuam for updating
this repo for PyTorch 1.0. You can find the original version for
torch <= 0.4.1
in pytorch_0.4
branch.
Introduction
The crop_and_resize
function is ported from tensorflow,
and has the same interface with tensorflow version, except the input feature map
should be in NCHW
order in PyTorch.
They also have the same output value (error < 1e-5) for both forward and backward as we expected,
see the comparision in test.py
.
Note:
Document of crop_and_resize
can be found here.
And RoIAlign
is a wrap of crop_and_resize
that uses boxes with unnormalized (x1, y1, x2, y2)
as input
(while crop_and_resize
use normalized (y1, x1, y2, x2)
as input).
See more details about the difference of
RoIAlign
and crop_and_resize
in tensorpack.
Warning: Currently it only works using the default GPU (index 0)
Usage
-
Install and test
python setup.py install ./test.sh
-
Use RoIAlign or crop_and_resize
Since PyTorch 1.2.0 Legacy autograd function with non-static forward method is deprecated. We use new-style autograd function with static forward method. Example:
import torch from roi_align import RoIAlign # RoIAlign module from roi_align import CropAndResize # crop_and_resize module # input feature maps (suppose that we have batch_size==2) image = torch.arange(0., 49).view(1, 1, 7, 7).repeat(2, 1, 1, 1) image[0] += 10 print('image: ', image) # for example, we have two bboxes with coords xyxy (first with batch_id=0, second with batch_id=1). boxes = torch.Tensor([[1, 0, 5, 4], [0.5, 3.5, 4, 7]]) box_index = torch.tensor([0, 1], dtype=torch.int) # index of bbox in batch # RoIAlign layer with crop sizes: crop_height = 4 crop_width = 4 roi_align = RoIAlign(crop_height, crop_width) # make crops: crops = roi_align(image, boxes, box_index) print('crops:', crops)
Output:
image: tensor([[[[10., 11., 12., 13., 14., 15., 16.], [17., 18., 19., 20., 21., 22., 23.], [24., 25., 26., 27., 28., 29., 30.], [31., 32., 33., 34., 35., 36., 37.], [38., 39., 40., 41., 42., 43., 44.], [45., 46., 47., 48., 49., 50., 51.], [52., 53., 54., 55., 56., 57., 58.]]], [[[ 0., 1., 2., 3., 4., 5., 6.], [ 7., 8., 9., 10., 11., 12., 13.], [14., 15., 16., 17., 18., 19., 20.], [21., 22., 23., 24., 25., 26., 27.], [28., 29., 30., 31., 32., 33., 34.], [35., 36., 37., 38., 39., 40., 41.], [42., 43., 44., 45., 46., 47., 48.]]]]) crops: tensor([[[[11.0000, 12.0000, 13.0000, 14.0000], [18.0000, 19.0000, 20.0000, 21.0000], [25.0000, 26.0000, 27.0000, 28.0000], [32.0000, 33.0000, 34.0000, 35.0000]]], [[[24.5000, 25.3750, 26.2500, 27.1250], [30.6250, 31.5000, 32.3750, 33.2500], [36.7500, 37.6250, 38.5000, 39.3750], [ 0.0000, 0.0000, 0.0000, 0.0000]]]])