Home

Awesome

<div align="center"> <samp> <h2> Surgical-VQLA++: Adversarial Contrastive Learning for Calibrated Robust VQLA in Robotic Surgery </h1> <h4> Long Bai*, Guankun Wang*, Mobarakol Islam*, Lalithkumar Seenivasan, An Wang and Hongliang Ren </h3> </samp>
</div>

Environment

Directory Setup

<!---------------------------------------------------------------------------------------------------------------->

In this project, we implement our method using the Pytorch library, the structure is as follows:


Dataset

EndoVis17/18-VQLA-Extended.


Run training


Evaluation