Awesome
imsearch
基于特征点匹配的的局部图像搜索工具
主要基于以下项目:
安装方式
- 安装 OpenCV、faiss
注:编译 faiss 时建议设置 -DFAISS_OPT_LEVEL=avx2
以最大化性能
cargo install --git https://github.com/lolishinshi/imsearch
用法
训练
首次运行时,需要根据大概需要添加的图片数量训练索引:
- 2k ~ 2w: K 取 65536,需要至少 5.2k 张图片训练
- 2w ~ 20w:K 取 262144,至少需要 21k 张图片训练
- 20w ~ 200w:K 取 1048576,至少需要 82k 张图片训练
然后将训练图片放到 train 文件夹内,并使用 imsearch add-images train
添加图片
再使用 imsearch export-data
导出 train.npy
再使用 python utils/train.py K train.npy
训练索引,
训练完的结果会保存在 ~/.config/imsearch/index
注:大数据集上的训练非常耗时,在 K = 1048576,训练图片为 100k 张时,两张 3080 花了 16 个小时才训练完成。
添加图片
使用 imsearch add-images DIR
添加指定目录下的所有图片
构建索引
使用 imsearch build-index
构建索引,这个过程同样非常慢,在 3970x 上,需要约 20~40 分钟构建 10k 张图片的索引
注:可以设置 RUST_LOG=debug
来打印详细日志以观察进度
搜索图片
# 让 imsearch 打印详细日志
export RUST_LOG=debug
# 以默认参数直接搜索单张图片
imsearch search-image test.jpg
# --mmap:不需要加载整个 index 到内存
# --nprobe=128:搜索附近的 128 的 bucket,提高了精度但耗费更多时间
imsearch --mmap --nprobe=128 search-image test.jpg
# 启动服务器,监听 127.0.0.1:8000 端口
imsearch --mmap start-server
# 使用 httpie 通过 web api 搜索图片
http --form http://127.0.0.1:8000/search file@test.jpg
搜索耗时:250w 张图片的索引,在 3970x 上搜索一次耗时约 0.5s