Awesome
Deep Equilibrium Approaches to Diffusion Models
Ashwini Pokle, Zhengyang Geng and Zico Kolter, NeurIPS 2022 [arxiv link]
This codebase has been adapted largely from the repository of Denoising Diffusion Implicit Models (DDIM) by Song. et. al. 2020 (https://arxiv.org/abs/2010.02502) (Note: we include the original MIT license that belongs to the authors of prior work (Song. et. al.) in this codebase.)
Getting Started
Create conda environment and install all packages from requirements.txt
conda create --name <environment_name> --file requirements.txt
conda activate <environment_name>
If you are working with CelebA 64x64 dataset, please download pretrained checkpoint from https://github.com/ermongroup/ddim If you are working with any of the other datasets like CIFAR10, LSUN Bedrooms or Outdoor Churches, please update the path to your cache directory here
Running the Experiments
The code has been tested on PyTorch 1.11.
Sampling
Sampling for FID evaluation
General command to sample with a DEQ or DDIM is:
python main.py --config {DATASET}.yml --model Diffusion --exp {PROJECT_PATH} --image_folder {IMG_FOLDER} --doc {DOCUMENTATIOIN_FOLDER} --sample --fid --timesteps 1000 --eta 0 --ni --method {METHOD} --use_pretrained
where
ETA
controls the scale of the variance (0 is DDIM, and 1 is one type of DDPM).STEPS
controls how many timesteps used in the process.MODEL_NAME
finds the pre-trained checkpoint according to its inferred path.METHOD
Use 'anderson' for DEQ and 'simple-seq' for DDIM
Please check generate_deq_convergence.sh for sampling commands for all the datasets.
Example command for sampling with DEQ from CIFAR10
python main.py --config cifar10.yml --model Diffusion --exp cifar10-orig-fid --image_folder samples-cifar10-and-t1000-long-new --doc cifar10 --sample --fid --timesteps 1000 --eta 0 --ni --method anderson --use_pretrained
The --use_pretrained
option will automatically load the model according to the dataset for CIFAR10, LSUN Bedrooms and Churches. We use DDPM models for all datasets except CelebA. Please download CelebA 64x64 pretrained model from https://github.com/ermongroup/ddim
Training DEQ for Model Inversion
python main.py --config {DATASET}_ls_opt.yml --model DiffusionInversion --exp {PROJECT_PATH} --image_folder {IMAGE_FOLDER} --doc {MODEL_NAME} --ls_opt --timesteps {STEPS} --ni --method {METHOD} --lambda1 1 --lambda2 0 --lambda3 0 --seed $i --tau {DAMPING_FACTOR} --use_wandb --no_augmentation --pg_steps {PG_STEPS}
where
ETA
controls the scale of the variance (0 is DDIM, and 1 is one type of DDPM).STEPS
controls how many timesteps used in the process.MODEL_NAME
finds the pre-trained checkpoint according to its inferred path.METHOD
Use 'anderson' for DEQ and 'simple-seq' for DDIMPG_STEPS
is the number of iterations while computing phantom gradients. We set this value to 1.DAMPING_FACTOR
is the value of damping used in phantom gradients. We set this to 0.1.
Please check invert_models.sh for sampling commands for all the datasets.