Home

Awesome

Discrete Optimization for Shape Matching

This is an example code for the paper "Discrete Optimization for Shape Matching" by Jing Ren, Simone Melzi, Peter Wonka, and Maks Ovsjanikov.

In this paper we propose a discrete solver that can be used to optimize different functional map based energies. Specifically, for a given functional map based energy E(C), our solver can minimize the input energy with the hard constraint that the functional map C is proper, i.e., corresponding to a pointwise map.

<p align="center"> <img align="center" src="/figs/overview.png", width=800> </p>

Example 01: Minimize the area-preserving and the angle-preserving energy

<p align="center"> <img align="center" src="/figs/eg_box.png", width=800> </p>

Example 02: Minimize descriptor-preserving energy

<p align="center"> <img align="center" src="/figs/eg_sphere.png", width=800> </p>

Example 03: Alternative to the multiplicative operator

<p align="center"> <img align="center" src="/figs/eg_faust.png", width=800> </p>

Example 04: Minimize the Laplacian Commutativity

<p align="center"> <img align="center" src="/figs/eg_smal.png", width=800> </p>

Comments