Awesome
MD-GNN
This repository contains the implementation of our paper:A Lightweight Metric Defence Strategy for Graph Neural Networks Against Poisoning Attacks accepted by ICICS2021.
Requirement
-
matplotlib == 3.2.2
-
torch_geometric == 1.5.0
-
networkx == 2.4
-
tqdm == 4.46.1
-
torch == 1.5.0
-
seaborn == 0.10.1
-
scipy == 1.4.1
-
numpy == 1.18.1
-
openpyxl == 3.0.6
-
deeprobust == 0.2.1
-
scikit_learn==0.24.2
Run Test
-
run test
python test.py
-
run MD-GCN
# Supported Datasets:['cora', 'citeseer', 'cora_ml'] # Supported Attacks:['meta', 'nettack', 'random'] # Supported Metrics:['Cfs', 'Cfs1', 'Cfs2', 'Cfs3', 'Cfs4', 'Cs', 'Cs1', 'Jaccard1'] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") data = Dataset(root='data/', name='cora', seed=15, require_mask=True) data.adj = sp.load_npz('adv_adj/cora_meta_adj_0.25.npz') output, time = CFS1(data, device, 'Cfs')
-
run experiments
from src.generate_experiment_data import * from src.generate_experiment_figure import * from src.save_excel import * dataset_list = ['cora', 'citeseer', 'cora_ml'] attack_list = ['meta', 'nettack', 'random'] defense_list = ['GCN', 'GCNSVD', 'Jaccard', 'ProGNN', 'RGCN', 'GAT', 'CFS', 'CfsGAT', 'CfsRGCN', 'GNNGuard', 'HGCN', 'CfsHGCN'] root = 'data/' root1 = 'adv_adj/' save_dir = 'experiment/data/0/' threshold_list = [0.03, 0.05] a = [0.05, 0.1] lr_list = [0.001, 0.005, 0.01, 0.05, 0.1] # run experiments experiment1(dataset_list, attack_list,defense_list, root, root1, save_dir) experiment2(dataset_list, attack_list, threshold_list, root, root1, save_dir) experiment3(dataset_list, attack_list, root, root1, save_dir, a) experiment4(dataset_list, attack_list, defense_list, root, root1, save_dir, 'Cfs4') experiment5(dataset_list, attack_list, lr_list, root, root1, save_dir, 'Cfs', 10) # generate experimental results figure1() figure2() figure3() figure4() result() result_time()
-
others
run generate_adv.py # generate adversarial attacks
run generate_clean.py # generate pre-processed graph
Project Structure
- MD-GNN
- adv-adj
- data
- defense
- experiment
- src:source code
- generate_adv.py
- generate_clean.py
- test.py
- utils.py