Paper Nums:100+ | <img width=150/> | <img width=220/> | | | <img width=300/> |
Multivariable | TimesNet_data | SparseTSF | SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters | Pytorch <br> <br> | ICML 2024 |
Multivariable | Electricity <br> PEMSD7M <br> BikeNYC <br> TimesNet_data | SCNN | Disentangling Structured Components: Towards Adaptive, Interpretable and Scalable Time Series Forecasting | Pytorch <br> <br> | TKDE 2024 |
Multivariable | TimesNet_data | iTransformer | iTransformer: Inverted Transformers Are Effective for Time Series Forecasting | Pytorch <br> <br> | ICLR 2024 |
Multivariable | NorPool <br> Caiso <br> Traffic <br> Electricity <br> Weather <br> Exchange <br> ETT <br> Wind | mr-Diff | ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis | None | ICLR 2024 |
Multivariable | ETT <br> Electricity <br> Weather <br> Traffic <br> Exchange <br> ILI | ModernTCN | Multi-Resolution Diffusion Models for Time Series Forecasting | Pytorch <br> <br> | ICLR 2024 |
Multivariable | TimesNet_data | Time-LLM | Time-LLM: Time Series Forecasting by Reprogramming Large Language Models | Pytorch <br> <br> | ICLR 2024 |
Multivariable | TimesNet_data | TEMPO | TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting | Pytorch <br> <br> | ICLR 2024 |
Multivariable | TimesNet_data | CARD | CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting | Pytorch <br> <br> | ICLR 2024 |
Multivariable | TimesNet_data | ARM | ARM: Refining Multivariate Forecasting with Adaptive Temporal-Contextual Learning | None | ICLR 2024 |
Multivariable | TimesNet_data | DAM | DAM: Towards a Foundation Model for Forecasting | None | ICLR 2024 |
Multivariable | TimesNet_data <br> PEMS3478 | TimeMixer | TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting | Pytorch <br> <br> | ICLR 2024 |
Multivariable | TimesNet_data | PDF | Periodicity Decoupling Framework for Long-term Series Forecasting | Pytorch <br> <br> | ICLR 2024 |
Multivariable <br> Missing Value | METR-LA <br> Electricity <br> PEMS <br> ETT <br> BeijingAir | BiTGraph | Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values | Pytorch <br> <br> | ICLR 2024 |
Multivariable | TimesNet_data <br> PEMS08 | LIFT | Rethinking Channel Dependence for Multivariate Time Series Forecasting: Learning from Leading Indicators | Pytorch <br> <br> | ICLR 2024 |
Multivariable | ETT <br> Weather <br> ILI <br> Traffic | STanHop | STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction | Pytorch <br> <br> | ICLR 2024 |
Multivariable | ETT <br> Weather <br> Electricity <br> Traffic <br> ILI <br> CloudCluster | Pathformer | Pathformer: Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting | Pytorch <br> <br> | ICLR 2024 |
Multivariable | TimesNet_data | pits | Learning to Embed Time Series Patches Independently | Pytorch <br> <br> | ICLR 2024 |
Multivariable | ETT <br> Weather <br> Electricity <br> Traffic | FITS | FITS: Modeling Time Series with 10k Parameters | Pytorch <br> <br> | ICLR 2024 |
Multivariable | ETT <br> Electricity <br> Weather <br> Lora | AutoTCL | Parametric Augmentation for Time Series Contrastive Learnin | Pytorch <br> <br> | ICLR 2024 |
Multivariable | ETT <br> Exchange <br> ILI | GLIP | Interpretable Sparse System Identification: Beyond Recent Deep Learning Techniques on Time-Series Prediction | Pytorch | ICLR 2024 |
Multivariable | TimesNet_data | UniTime | UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting | Pytorch <br> <br> | WWW 2024 |
Multivariable | Ross <br> Saratoga <br> UpperPen <br> SFC | DAN | Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting | Pytorch <br> <br> | AAAI 2024 |
Multivariable | ILI <br> Weather <br> Traffic <br> Electricity <br> ETT <br> Exchange | HDMixer | HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate Time Series Forecasting | Pytorch <br> <br> | AAAI 2024 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 <br> England <br> TaxiBJ <br> PEMS-BAY | STPGNN | Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting | None | AAAI 2024 |
Multivariable | FD001 <br> FD002 <br> FD003 <br> FD004 | FC-STGNN | Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data | Pytorch <br> <br> | AAAI 2024 |
Multivariable | PEMS04 <br> PEMS08 <br> blockchain | TMP-Nets | Time-Aware Knowledge Representations of Dynamic Objects with Multidimensional Persistence | None | AAAI 2024 |
Multivariable | METR-LA <br> PEMS-BAY | ModWaveMLP | ModWaveMLP: MLP-Based Mode Decomposition and Wavelet Denoising Model to Defeat Complex Structures in Traffic Forecasting | TF <br> <br> | AAAI 2024 |
Multivariable | Flight <br> Weather <br> ETT <br> Electricity <br> Exchange | MSGNet | MSGNet: Learning Multi-Scale Inter-series Correlations for Multivariate Time Series Forecasting | Pytorch <br> <br> | AAAI 2024 |
Multivariable | Self-PeMS | DLF | Towards Dynamic Spatial-Temporal Graph Learning: A Decoupled Perspective | Pytorch <br> <br> | AAAI 2024 |
Multivariable | ETT <br> Weather <br> ILI <br> Exchange | HTV-Trans | Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting | Pytorch <br> <br> | AAAI 2024 |
Multivariable | A-share <br> Cross-Market <br> ETT | ST-DAN | Adaptive Meta-Learning Probabilistic Inference Framework for Long Sequence Prediction | Pytorch <br> <br> | AAAI 2024 |
Irregular | USHCN <br> MIMIC-III <br> MIMIC-IV <br> Physionet-12 | GraFITi | GraFITi: Graphs for Forecasting Irregularly Sampled Time Series | Pytorch <br> <br> | AAAI 2024 |
Multivariable | ETT <br> Electricity <br> Traffic <br> Weather <br> Exchange | U-Mixer | U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting | None | AAAI 2024 |
Traffic <br> Flow | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | MultiSPANS | MultiSPANS: A Multi-range Spatial-Temporal Transformer Network for Traffic Forecast via Structural Entropy Optimization | Pytorch <br> <br> | WSDM 2024 |
Multivariable | SIP <br> NYC <br> METR-LA | CreST | CreST: A Credible Spatiotemporal Learning Framework for Uncertainty-aware Traffic Forecasting | None | WSDM 2024 |
Multivariable | Web Traffic <br> Labour <br> Traffic <br> Tourism | HTS | NeuralReconciler for Hierarchical Time Series Forecasting | None | WSDM 2024 |
Multivariable | NYC13 <br> BikeNYC <br> Chicago21 <br> Chicago22 | CityCAN | CityCAN: Causal Attention Network for Citywide Spatio-Temporal Forecasting | None | WSDM 2024 |
Multivariable | Solar <br> Wiki <br> Traffic <br> ECG <br> Electricity <br> COVID-19 <br> Weather <br> ETT | FreTS | Frequency-domain MLPs are More Effective Learners in Time Series Forecasting | Pytorch <br> <br> | NIPS 2023 |
LLM4TS <br> Zero Shot | Darts <br> Monash <br> Informer | - | Large Language Models Are Zero-Shot Time Series Forecasters | LLM <br> <br> | NIPS 2023 |
Zero Shot | ECL <br>ETT <br> Exchange <br> ILI <br> Traffic <br> Weather | ForecastPFN | ForecastPFN: Synthetically-Trained Zero-Shot Forecasting | TF <br> <br> | NIPS 2023 |
Multivariable | ECL <br> Traffic <br>ETT <br> Weather | WITRAN | WITRAN: Water-wave Information Transmission and Recurrent Acceleration Network for Long-range Time Series Forecasting | Pytorch <br> <br> | NIPS 2023 |
Multivariable | ETT <br> Weather <br> PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | Neural Lad | Neural Lad: A Neural Latent Dynamics Framework for Times Series Modeling | None | NIPS 2023 |
Multivariable | ETT <br> Weather <br> Electricity | OneNet | OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling | Pytorch <br> <br> | NIPS 2023 |
Multivariable <br> Solar Irradiance | CAB <br> TAM | CrossViVit | Improving day-ahead Solar Irradiance Time Series Forecasting by Leveraging Spatio-Temporal Context | Pytorch <br> <br> | NIPS 2023 |
Multivariable | ECL <br>ETT <br> Exchange <br> ILI <br> Traffic <br> Weather | Koopa | Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors | Pytorch <br> <br> | NIPS 2023 |
Multivariable | GPVAR <br> METR-LA <br> PEMS-BAY <br> PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 <br> CER-E<br>AQI | TTS-IMP | Taming Local Effects in Graph-based Spatiotemporal Forecasting | Pytorch <br> <br> | NIPS 2023 |
Multivariable | PEMS08 <br> AIR-BJ <br> AIR-GZ | CaST | Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment | Pytorch <br> <br> | NIPS 2023 |
Multivariable | PEMS08 <br> METR-LA <br> NYC Taxi <br> NYC Bike | GPT-ST | GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks | Pytorch <br> <br> | NIPS 2023 |
Multivariable | Solar <br> Wiki <br> Traffic <br> COVID-19 | FourierGNN | FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective | Pytorch <br> <br> | NIPS 2023 |
Multivariable | ETT <br> Weather <br> Electricity <br> Traffic | SimMTM | SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling | Pytorch <br> <br> | NIPS 2023 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | BasisFormer | BasisFormer: Attention-based Time Series Forecasting with Learnable and Interpretable Basis | Pytorch <br> <br> | NIPS 2023 |
Irregular | Neonate <br> Traffic <br> MIMIC <br> StackOverflow <br> BookOrder <br> Exchange <br> ETT <br> ILI<br> Weather | ContiFormer | ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling | Pytorch | NIPS 2023 |
Multivariable | Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI <br> ETT | SAN | Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective | Pytorch <br> <br> | NIPS 2023 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | DeepTime (Framework, <br> Fourier Features, <br> Meta-optimization) | Learning Deep Time-index Models for Time Series Forecasting | Pytorch <br> <br> | ICML 2023 |
Multivariable | Crime <br> CHI-Taxi <br> NYC-Bike <br> NYC-Taxi<br> CHI-House<br> NYC-House | GraphST | Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation | Pytorch <br> <br> | ICML 2023 |
Multivariable | Synthetic <br> Taxi <br> Electricity <br> Traffic | FeatureP (Feature Enhancement) | Feature Programming for Multivariate Time Series Prediction | Pytorch <br> <br> | ICML 2023 |
Multivariable | NorPool <br> Caiso <br> Weather <br> ETT <br> Wind <br> Traffic <br> Electricity <br> Exchange | TimeDiff | Non-autoregressive Conditional Diffusion Models for Time Series Prediction | None | ICML 2023 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | MICN | MICN: Multi-scale Local and Global Context Modeling for Long-term Series Forecasting | Pytorch <br> <br> | ICLR 2023 |
Multivariable | ETT <br> Weather <br> Electricity <br> ILI <br> Traffic | Crossformer | Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting | Pytorch <br> <br> | ICLR 2023 |
Forecast <br> Imputation <br> Classifi <br> AnomalyDet | ETT <br> M4 <br> Electricity <br> Weather <br>SMD,MSL <br> SMAP,SWaT <br> PSM | TimesNet | TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis | Pytorch <br> <br> | ICLR 2023 |
Multivariable | | Meta-SSM | Sequential Latent Variable Models for Few-Shot High-Dimensional Time-Series Forecasting | Pytorch <br> <br> | ICLR 2023 |
Multivariable | ETT <br> Electricity <br> Traffic <br> Weather | FSNet | Learning Fast and Slow for Time Series Forecasting | Pytorch <br> <br> | ICLR 2023 |
Robust <br> Multivariable | Traffic <br> Taxi <br> Wiki <br> Electricity | | Robust Multivariate Time-Series Forecasting: Adversarial Attacks and Defense Mechanisms | Amazon | ICLR 2023 |
Multivariable | Electricity <br> Crypto <br> M4 <br> Traffic <br> Exchange | KNF | Koopman Neural Operator Forecaster for Time-series with Temporal Distributional Shifts | Pytorch <br> <br> | ICLR 2023 |
Multivariable | ETT <br> Weather <br> Electricity <br> Traffic <br> Exchange | SpaceTime | Effectively Modeling Time Series with Simple Discrete State Spaces | Pytorch <br> <br> | ICLR 2023 |
Multivariable | Weather <br> Traffic <br> Electricity <br> ILI <br> ETT | PatchTST | A Time Series is Worth 64 Words: Long-term Forecasting with Transformers | Pytorch <br> <br> | ICLR 2023 |
Multivariable | Exchange <br> Weather <br> Electricity <br> Traffic <br> ILI | Scaleformer | Scaleformer: Iterative Multi-scale Refining Transformers for Time Series Forecasting | Pytorch <br> <br> | ICLR 2023 |
Multivariable <br> classification <br> AnomalyDec | Electricity <br> Weather <br> ETTm1 <br> MSL <br> SMD <br> SMAP | SBT | Sparse Binary Transformers for Multivariate Time Series Modeling | Pytorch <br> <br> | KDD 2023 |
Multivariable | SIP <br> METR-LA <br> KnowAir <br> Electricity | CauSTG | Maintaining the Status Quo: Capturing Invariant Relations for OOD Spatiotemporal Learning | Pytorch <br> <br> | KDD 2023 |
Robust <br> Multivariable | PEMS-BAY <br> PEMS04 | RDAT | Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic Adversarial Training | Pytorch <br> <br> | KDD 2023 |
Multivariable | Beijing <br> Chengdu <br> Harbin | Frigate | Frigate: Frugal Spatio-temporal Forecasting on Road Networks | Pytorch <br> <br> | KDD 2023 |
Multivariable | XC-Traffic <br> NYC-Traffic | GCIM | Generative Causal Interpretation Model for Spatio-Temporal Representation Learning | None | KDD 2023 |
Multivariable | Tourism <br> Labour <br> Wiki <br> Flu-Symptoms <br> FB-Survey | PROFHiT | When Rigidity Hurts: Soft Consistency Regularization for Probabilistic Hierarchical Time Series Forecasting | Pytorch <br> <br> | KDD 2023 |
Multivariable <br> Under Miss | AQI-36 <br> AQI <br> PEMS-BAY <br> CER-E <br> Healthcare <br> SMAP | MIDM | An Observed Value Consistent Diffusion Model for Imputing Missing Values in Multivariate Time Series | Author | KDD 2023 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 <br> etc. | Localised | Localised Adaptive Spatial-Temporal Graph Neural Network | None | KDD 2023 |
Multivariable | PEMS3-Stream | PECPM | Pattern Expansion and Consolidation on Evolving Graphs for Continual Traffic Prediction | None | KDD 2023 |
Multivariable | Tourism <br> Wiki <br> Traffic | HPO | Hierarchical Proxy Modeling for Improved HPO in Time Series Forecasting | None | KDD 2023 |
Multivariable | Weather <br> Traffic <br> Electricity <br> ETT | TSMixer | TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting | None | KDD 2023 |
Transfer <br> Traffic <br> Forecasting | PEMSD7M <br> PEMSD7M <br> METR-LA <br> PEMS-BAY | TransGTR | Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities | Author | KDD 2023 |
Multivariable | ETT <br> Traffic <br> Electricity <br> Exchange <br> Weather <br> ILI | DLinear | Are Transformers Effective for Time Series Forecasting | Pytorch <br> <br> | AAAI 2023 |
Multivariable | METR-LA <br> PEMSD7M | STC-Dropout | Easy Begun Is Half Done: Spatial-Temporal Graph Modeling with ST-Curriculum Dropout | Pytorch <br> <br> | AAAI 2023 |
Multivariable | BJ-Bike <br> NYC-Bike | STNSCM | Spatio-Temporal Neural Structural Causal Models for Bike Flow Prediction | Pytorch <br> <br> | AAAI 2023 |
Multivariable | XC-Trans <br> XC-Speed | CCHMM | Causal Conditional Hidden Markov Model for Multimodal Traffic Prediction | Pytorch <br> <br> | AAAI 2023 |
Multivariable | NYCBike1 <br> NYCBike2 <br> NYCTaxi <br> BJTaxi | ST-SSL | Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction | Pytorch <br> <br> | AAAI 2023 |
Multivariable | PV-US <br> CER-En | SGP | Scalable Spatiotemporal Graph Neural Networks | Pytorch <br> <br> | AAAI 2023 |
Multivariable | Electricity <br> Solar <br> PEMS-BAY <br> METR-LA | SRD | Learning Decomposed Spatial Relations for Multi-Variate Time-Series Modeling | Pytorch <br> <br> | AAAI 2023 |
Multivariable | ETT <br> Electricity | InfoTS | Time Series Contrastive Learning with Information-Aware Augmentations | Pytorch <br> <br> | AAAI 2023 |
Multivariable | PhysioNet <br> MIMIC-III <br> Activity <br> Appliances Energy | PrimeNet | PrimeNet: Pre-training for Irregular Multivariate Time Series | Pytorch <br> <br> | AAAI 2023 |
Multivariable | Electricity <br> ETT <br> Weather | Dish-TS | Dish-TS: A General Paradigm for Alleviating Distribution Shift in Time Series Forecasting | Pytorch <br> <br> | AAAI 2023 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | NHITS | NHITS: Neural Hierarchical Interpolation for Time Series Forecasting | Pytorch <br> <br> | AAAI 2023 |
Multivariable | METR-LA <br> ETT <br> Weather | MegaCRN | Spatio-Temporal Meta-Graph Learning for Traffic Forecasting | Pytorch <br> <br> | AAAI 2023 |
Multivariable | Santa <br> Traffic | NEC+ | An Extreme-Adaptive Time Series Prediction Model Based on Probability-Enhanced LSTM Neural Networks | Pytorch <br> <br> | AAAI 2023 |
Extreme MTSF | Electricity <br> Solar <br> Weather <br> Traffic | WaveForM | WaveForM: Graph Enhanced Wavelet Learning for Long Sequence Forecasting of Multivariate Time Series | Pytorch <br> <br> | AAAI 2023 |
Multivariable | PEMS04 <br> PEMS07 <br> PEMS08 <br> NYCTaxi <br> CHBike <br> TDrive | PDFormer | PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction | Pytorch <br> <br> | AAAI 2023 |
Multivariable | AmapBeijing <br> AmapChengdu | STGNPP | Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event Prediction | None | AAAI 2023 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | InParformer | InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attention for Long-Term Time Series Forecasting | None | AAAI 2023 |
Multivariable | Tourism <br> Labour <br> M5 | SLOTH | SLOTH: Structured Learning and Task-Based Optimization for Time Series Forecasting on Hierarchies | None | AAAI 2023 |
Multivariable | Wind <br> Solar | eForecaster | eForecaster: Unifying Electricity Forecasting with Robust, Flexible, and Explainable Machine Learning Algorithms | None | AAAI 2023 |
Multivariable | NYCTaxi <br> PEMS04 | AutoSTL | AutoSTL: Automated Spatio-Temporal Multi-Task Learning | None | AAAI 2023 |
Multivariable | METR-LA <br> PEMS-BAY | Trafformer | Trafformer: Unify Time and Space in Traffic Prediction | None | AAAI 2023 |
Multivariable | Electricity <br> PM2.5 <br> Exchange | DeLELSTM | DeLELSTM: Decomposition-based Linear Explainable LSTM to Capture Instantaneous and Long-term Effects in Time Series | Pytorch <br> <br> | IJCAI 2023 |
Multivariable | NYC-Bike <br> PEMS-BAY <br> PEMS08 | ReMo | Not Only Pairwise Relationships: Fine-Grained Relational Modeling for Multivariate Time Series Forecasting | Pytorch <br> <br> | IJCAI 2023 |
Multivariable | NASA | MetePFL | Prompt Federated Learning for Weather Forecasting: Toward Foundation Models on Meteorological Data | Pytorch <br> <br> | IJCAI 2023 |
Multivariable | Hurricane <br> Climate | Self-Recover | Self-Recover: Forecasting Block Maxima in Time Series from Predictors with Disparate Temporal Coverage Using Self-Supervised Learning | None | IJCAI 2023 |
Multivariable | Weather <br> Traffc <br> Electricity <br> Exchange <br> ILI | SMARTformer | SMARTformer: Semi-Autoregressive Transformer with Efficient Integrated Window Attention for Long Time Series Forecasting | None | IJCAI 2023 |
Multivariable | METR-LA <br> Beijing <br> Xiamen | INCREASE | INCREASE: Inductive Graph Representation Learning for Spatio-Temporal Kriging | TF <br> <br> | WWW 2023 |
Multivariable | MQPS <br> ETT <br> Electricity | KAE-Informer | KAE-Informer: A Knowledge Auto-Embedding Informer for Forecasting Long-Term Workloads of Microservices | Pytorch <br> <br> | WWW 2023 |
Multivariable | Typhoon-JP <br> COVID-JP <br> Hurricane-US | MemeSTN | Learning Social Meta-knowledge for Nowcasting Human Mobility in Disaster | Pytorch <br> <br> | WWW 2023 |
Multivariable | NYC <br> Chicago | EALGAP | Extreme-Aware Local-Global Attention for Spatio-Temporal Urban Mobility Learning | Keras <br> <br> | ICDE 2023 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | DyHSL | Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting | Pytorch <br> <br> | ICDE 2023 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | STWave | When Spatio-Temporal Meet Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention Networks | Pytorch <br> <br> | ICDE 2023 |
Multivariable | Seattle <br> PEMS04 <br> PEMS08 | SSTBAN | Self-Supervised Spatial-Temporal Bottleneck Attentive Network for Efficient Long-term Traffic Forecasting | Pytorch <br> <br> | ICDE 2023 |
Multivariable | PEMSD4 <br> PEMSD8 <br> AirBJ <br> TrafficSIP | MGTF | A Multi-graph Fusion Based Spatiotemporal Dynamic Learning Framework | Author | WSDM 2023 |
Multivariable | METR-LA <br> PEMS-BAY <br> PEMS04 <br> PEMS07 <br> PEMS08 | STAEformer | Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting | Pytorch <br> <br> | CIKM 2023 |
Traffic | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | TrendGCN | Enhancing the Robustness via Adversarial Learning and Joint Spatial-Temporal Embeddings in Traffic Forecasting | Pytorch <br> <br> | CIKM 2023 |
Multivariable | ETT <br> Electricity <br> Traffic <br> Weather <br> ILI <br> Exchange | GCformer | GCformer: An Efficient Solution for Accurate and Scalable Long-Term Multivariate Time Series Forecasting | Pytorch <br> <br> | CIKM 2023 |
Multivariable | ETT <br> Electricity <br> Traffic | Seq2Peak | Unlocking the Potential of Deep Learning in Peak-Hour Series Forecasting | Pytorch <br> <br> | CIKM 2023 |
Multivariable | PEMS04 <br> PEMS07 <br> PEMS08 <br> NYC Crime <br> CHI Crime | CL4ST | Spatio-Temporal Meta Contrastive Learning | Pytorch <br> <br> | CIKM 2023 |
Multivariable | NYC Bike <br> NYC Taxi | MLPST | MLPST: MLP is All You Need for Spatio-Temporal Prediction | Author | CIKM 2023 |
Multivariable | TaxiBJ <br> BikeNYC | MC-STL | Mask- and Contrast-Enhanced Spatio-Temporal Learning for Urban Flow Prediction | Pytorch <br> <br> | CIKM 2023 |
Multivariable | PeMS <br> Beijing <br> Electricity <br> COVID-CHI | MemDA | MemDA: Forecasting Urban Time Series with Memory-based Drift Adaptation | Pytorch <br> <br> | CIKM 2023 |
Cross City <br> Traffic | PEMS-BAY <br> METR-LA <br> Chengdu <br> Shenzhen | TPB | Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank | Pytorch <br> <br> | CIKM 2023 |
Traffic Speed | METR-LA <br> PEMS-BAY <br> PEMSD7M | UAGCRN | Enhancing Spatio-temporal Traffic Prediction through Urban Human Activity Analysis | TF <br> <br> | CIKM 2023 |
Multivariable | Complaint <br> NYC Taxi | PromptST | PromptST: Prompt-Enhanced Spatio-Temporal Multi-Attribute Prediction | Pytorch <br> <br> | CIKM 2023 |
Multivariable | METR-LA <br> PEMS-BAY <br> PEMS08 | HIEST | Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic Forecasting | Pytorch <br> <br> | CIKM 2023 |
Multivariable | ETT <br> Electricity <br> Weather <br> Traffic | TemDep | TemDep: Temporal Dependency Priority for Multivariate Time Series Prediction | Pytorch <br> <br> | CIKM 2023 |
Traffic | BJ-Center <br> METR-LA | ST-MoE | ST-MoE: Spatio-Temporal Mixture-of-Experts for Debiasing in Traffic Prediction | None | CIKM 2023 |
Multivariable | ETT <br> Electricity <br> Weather <br> Traffic <br> Exchange | AVGNets | Learning Visibility Attention Graph Representation for Time Series Forecasting | None | CIKM 2023 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | STGBN | Spatial-Temporal Graph Boosting Networks: Enhancing Spatial-Temporal Graph Neural Networks via Gradient Boosting | None | CIKM 2023 |
Multivariable | ETT <br> Electricity <br> Traffic <br> ILI <br> Exchange | FAMC-Net | FAMC-Net: Frequency Domain Parity Correction Attention and Multi-Scale Dilated Convolution for Time Series Forecasting | None | CIKM 2023 |
Cross City <br> Traffic | NYC <br> Chicago <br> Nashville | CARPG | CARPG: Cross-City Knowledge Transfer for Traffic Accident Prediction via Attentive Region-Level Parameter Generation | None | CIKM 2023 |
Traffic | SPEED <br> FLOW | CANet | Clustering-property Matters: A Cluster-aware Network for Large Scale Multivariate Time Series Forecasting | None | CIKM 2023 |
Multivariable | ETT <br> Exchange <br> ILI <br> Weather <br> Electricity <br> Traffic | DSformer | DSformer: A Double Sampling Transformer for Multivariate Time Series Long-term Prediction | None | CIKM 2023 |
Multivariable | Wufu | MODE | Monotonic Neural Ordinary Differential Equation: Time-series Forecasting for Cumulative Data | None | CIKM 2023 |
Multivariable | NYC | MetaRSTP | Region Profile Enhanced Urban Spatio-Temporal Prediction via Adaptive Meta-Learning | None | CIKM 2023 |
Multivariable | SIP <br> NYC <br> METR-LA | G2S | Towards Learning in Grey Spatiotemporal Systems: A Prophet to Non-consecutive Spatiotemporal Dynamics | None | SDM 2023 |
Multivariable | Solar <br> PEMS-BAY <br> Electricity | ERL | Time-delayed Multivariate Time Series Predictions | None | SDM 2023 |
Multivariable | Weather2K | Weather2K | Weather2K: A Multivariate Spatio-Temporal Benchmark Dataset for Meteorological Forecasting Based on Real-Time Observation Data from Ground Weather Stations | Weather2K <br> <br> | AISTATS 2023 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | FiLM | FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting | Pytorch <br> <br> | NeurIPS 2022 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Weather | LaST | Learning Latent Seasonal-Trend Representations for Time Series Forecasting | Pytorch <br> <br> | NeurIPS 2022 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | WaveBound | WaveBound: Dynamic Error Bounds for Stable Time Series Forecasting | Pytorch <br> <br> | NeurIPS 2022 |
Multivariable | COVID-19 <br> PEMS04 <br> PEMS08 <br> Temperature <br> Bytom <br> Wind | ZFC-SHCN | Time-Conditioned Dances with Simplicial Complexes: Zigzag Filtration Curve based Supra-Hodge Convolution Networks for Time-series Forecasting | Future | NeurIPS 2022 |
Multivariable | ETT <br> Traffic <br> Solar <br> Electricity <br> Exchange <br> PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | SCINet | SCINet: Time Series Modeling and Forecasting with Sample Convolution and Interaction | Pytorch <br> <br> | NeurIPS 2022 |
Multivariable | Electricity <br> ETT <br> Exchange <br> ILI <br> Traffic <br> Weather | NonstaTransformer | Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting | Pytorch <br> <br> | NeurIPS 2022 |
Multivariable | Traffic <br> Solar <br> Electricity <br> Exchange <br> PEMS07(M) <br> PEMS-BAY | TPGNN | Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks | Future | NeurIPS 2022 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | DSTAGNN | DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic Flow Forecasting | Pytorch <br> <br> | ICML 2022 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | FEDformer <br> (EncDec,<br> EnhancedFeature) | FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting | Pytorch <br> <br> | ICML 2022 |
Multivariable | Traffic <br> Electricity <br> Wiki <br> Sales | DAF | DAF-Domain Adaptation for Time Series Forecasting via Attention Sharing | None | ICML 2022 |
Multivariable | Electricity <br> Solar <br> Fred MD <br> KDD Cup | TACTiS <br> (Copulas,<br> Trans) | TACTiS: Transformer-Attentional Copulas for Time Series | Pytorch <br> <br> | ICML 2022 |
Multivariable | French <br> Electricity | AgACI | Adaptive Conformal Predictions for Time Series | Python,R <br> <br> | ICML 2022 |
Traffic Speed | NAVER-Seoul <br> METR-LA | PM-MemNet <br> (Mem,KNN) | Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic Forecasting | Pytorch <br> <br> | ICLR 2022 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS08 <br> COVID-19,etc | TAMP-S2GCNets <br> (GCN,AR, <br> Topological Features) | TAMP-S2GCNets: Coupling Time-Aware Multipersistence Knowledge Representation with Spatio-Supra Graph Convolutional Networks for Time-Series Forecasting | Pytorch | ICLR 2022 |
Multivariable | ETT <br> Electricity <br> Weather | CoST | CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting | Pytorch <br> <br> | ICLR 2022 |
Multivariable | Electricity <br> Traffic <br> M4 <br> CASIO <br> NP | DEPTS | DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting | Pytorch <br> <br> | ICLR 2022 |
Multivariable | ETT <br> Electricity <br> Wind <br> App Flow | Pyraformer | Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting | Pytorch <br> <br> | ICLR 2022 |
Multivariable | ETT <br> Electricity <br> M4 <br> Air Quality <br> Nasdaq | RevIN | Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift | Pytorch <br> <br> | ICLR 2022 |
Multivariable | METR-LA <br> PEMS-BAY <br> PEMS04 <br> PEMS08 | D2STGNN | Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting | Pytorch <br> <br> | VLDB 2022 |
Multivariable | METR-LA <br> PEMS-BAY <br> PEMS04 | STEP | Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting | Pytorch <br> <br> | KDD 2022 |
Multivariable | Solar <br> Electricity <br> Exchange <br> Wind <br> NYCBike <br> NYCTaxi | ESG | Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting | Pytorch <br> <br> | KDD 2022 |
Multivariable | METR-LA <br> Solar <br> Traffic <br> ECG5000 | VSF | Multi-Variate Time Series Forecasting on Variable Subsets | Pytorch,dgl <br> <br> | KDD 2022 |
Multivariable | DC Bike <br> DC Taxi | CrossTReS | Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting | Pytorch,dgl <br> <br> | KDD 2022 |
Multivariable | ETT <br> Weather <br> Exchange <br> Traffic <br> Electricity | Quatformer | Learning to Rotate: Quaternion Transformer for Complicated Periodical Time Series Forecasting | MRA-BGCN Author <br> None Code | KDD 2022 |
Multivariable | NYCBike <br> NYCTaxi <br> PEMS03 <br> PEMS08 | GMSDR | MSDR: Multi-Step Dependency Relation Networks for Spatial Temporal Forecasting | Pytorch <br> <br> | KDD 2022 |
Multivariable | Hangzhou <br> NYC | DTIGNN | Modeling Network-level Traffic Flow Transitions on Sparse Data | Pytorch <br> <br> | KDD 2022 |
Multivariable | Temperature <br> Cloud cover <br> Humidity <br> Wind | CLCRN | Conditional Local Convolution for Spatio-temporal Meteorological Forecasting | Pytorch <br> <br> | AAAI 2022 |
Traffic Flow | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 <br> PEMS07(M) <br> PEMS07(L) | STG-NCDE | Graph Neural Controlled Differential Equations for Traffic Forecasting | Pytorch <br> <br> | AAAI 2022 |
Traffic Flow | GT-221 <br> WRS-393 <br> ZGC-564 | STDEN | STDEN: Towards Physics-guided Neural Networks for Traffic Flow Prediction | Pytorch <br> <br> | AAAI 2022 |
Multivariable | Electricity <br> Traffic <br> PEMS07(M) <br> METR-LA | CATN | CATN: Cross Attentive Tree-Aware Network for Multivariate Time Series Forecasting | None | AAAI 2022 |
Multivariable | ETT <br> Electricity | TS2Vec | TS2Vec: Towards Universal Representation of Time Series | Pytorch <br> <br> | AAAI 2022 |
Multivariable | ETT <br> Electricity <br> Weather | Triformer | Triformer: Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting--Full Version | Pytorch <br> <br> | IJCAI 2022 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | FOGS | FOGS: First-Order Gradient Supervision with Learning-based Graph for Traffic Flow Forecasting | Pytorch <br> <br> | IJCAI 2022 |
Multivariable | PEMS04 <br> PEMS08 <br> RPCM | RGSL | Regularized Graph Structure Learning with Semantic Knowledge for Multi-variates Time-Series Forecasting | Pytorch <br> <br> | IJCAI 2022 |
Multivariable | Air Quality <br> Parking | DMGA | Long-term Spatio-Temporal Forecasting via Dynamic Multiple-Graph Attention | None | IJCAI 2022 |
Multivariable | YellowCab <br> GreenCab <br> Solar | ST-KMRN | Physics-Informed Long-Sequence Forecasting From Multi-Resolution Spatiotemporal Data | Author | IJCAI 2022 |
Multivariable | NYCTaxi <br> NYCBike <br> CHIBike <br> BJTaxi <br> Chengdu | STAN | When Transfer Learning Meets Cross-City Urban Flow Prediction: Spatio-Temporal Adaptation Matters | None | IJCAI 2022 |
Multivariable | Hurricanes <br> Ausgrid <br> Weather | DeepExtrema | DeepExtrema: A Deep Learning Approach for Forecasting Block Maxima in Time Series Data | Pytorch <br> <br> | IJCAI 2022 |
Multivariable | GoogleSymptoms <br> Covid19 <br> Power <br> Tweet | CAMul | CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting | Pytorch <br> <br> | WWW 2022 |
Multivariable | Electricity <br> Stock | MRLF | Multi-Granularity Residual Learning with Confidence Estimation for Time Series Prediction | Pytorch <br> <br> | WWW 2022 |
Multivariable <br> Classification <br> Forecasting | MuJoCo <br> Google Stock | EXIT | EXIT: Extrapolation and Interpolation-based Neural Controlled Differential Equations for Time-series Classification and Forecasting | Pytorch <br> <br> | WWW 2022 |
Traffic Flow | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | ST-WA | Towards Spatio- Temporal Aware Traffic Time Series Forecasting | Pytorch <br> <br> | ICDE 2022 |
Mobility <br> Prediction | NYC <br> Dallas <br> Miami | SHIFT | Translating Human Mobility Forecasting through Natural Language Generation | Hao Xue | WSDM 2022 |
Traffic Flow | TaxiBJ <br> BikeNYC | ST-GSP | ST-GSP: Spatial-Temporal Global Semantic Representation Learning for Urban Flow Prediction | Pytorch <br> <br> | WSDM 2022 |
Multivariable | Traffic <br> Temperature | ReTime | Retrieval Based Time Series Forecasting | None | CIKM 2022 |
Multivariable | Rainfall <br> Traffic <br> ETT <br> Stock <br> Climate | DXtreMM | Deep Extreme Mixture Model for Time Series Forecasting | Pytorch <br> <br> | CIKM 2022 |
MTS Analysis <br> MTS Forecasting <br> Anormaly Detection | ETT <br> Electricity <br> SMD <br> SMAP <br> MSL <br> SWaT | MARINA | MARINA: An MLP-Attention Model for Multivariate Time-Series | None | CIKM 2022 |
Traffic Speed | METR-LA <br> PEMS-BAY | ResCAL | Residual Correction in Real-Time Traffic Forecasting | None | CIKM 2022 |
Model Selection | | AutoForecast | AutoForecast: Automatic Time-Series Forecasting Model Selection | None | CIKM 2022 |
Traffic Flow | PEMS04 <br> PEMS07 <br> PEMS08 | DastNet | Domain Adversarial Spatial-Temporal Network: A Transferable Framework for Short-term Traffic Forecasting across Cities | Pytorch <br> <br> | CIKM 2022 |
Traffic Flow & Speed | METR-LA <br> PEMS-BAY <br> PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | AutoSTS | Automated Spatio-Temporal Synchronous Modeling with Multiple Graphs for Traffic Prediction | YongLi THU | CIKM 2022 |
Traffic Condition | TRCV-BJ <br> TRCV-SH <br> TRCV-ZZ | DuTraffic | DuTraffic: Live Traffic Condition Prediction with Trajectory Data and Street Views at Baidu Maps | None | CIKM 2022 |
Multivariable | ETT <br> Electricity <br> WTH <br> Weather <br> ILI <br> Exchange | Linear | Do Simpler Statistical Methods Perform Better in Multivariate Long Sequence Time-Series Forecasting? | None | CIKM 2022 |
Multivariable | Solar <br> Traffic <br> Electricity <br> Exchange | MAGL | Memory Augmented Graph Learning Networks for Multivariate Time Series Forecasting | None | CIKM 2022 |
Multivariable | PEMS04 <br> PEMS07 <br> PEMS08 <br> PEMS-BAY <br> Electricity | STID | Spatial-Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series Forecasting | Pytorch <br> <br> | CIKM 2022 |
Multivariable | METR-LA <br> PEMS-BAY <br> PEMS04 <br> PEMS07 | ASTTN | Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting | None | CIKM 2022 |
Multivariable | Seoul | CGAN | Context-aware Traffic Flow Forecasting in New Roads | None | CIKM 2022 |
Traffic Flow & Speed | METR-LA <br> PEMS-BAY <br> PEMS-M <br> PEMS04 <br> PEMS08 | ST-GAT | ST-GAT: A Spatio-Temporal Graph Attention Network for Accurate Traffic Speed Prediction | Author | CIKM 2022 |
Traffic Speed | METR-LA <br> PEMS-BAY | HOMGNNs | Higher-Order Masked Graph Neural Networks for Traffic Flow Prediction | Pytorch <br> <br> | ICDM 2022 |
Multivariable | M4 <br> Electricity <br> car-parts | TopAttn | Topological Attention for Time Series Forecasting | Pytorch<br> <br> <br> Future | NeurIPS 2021 |
Multivariable | Rossmann <br> M5 <br> Wiki | MisSeq | MixSeq: Connecting Macroscopic Time Series Forecasting with Microscopic Time Series Data | None | NeurIPS 2021 |
Multivariable | ETT <br> Electricity <br> Exchange <br> Traffic <br> Weather <br> ILI | Autoformer | Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting | Pytorch <br> <br> | NeurIPS 2021 |
Multivariable | PEMS04 <br> PEMS08 <br> Traffic <br> ADI <br> M4 ,etc | Error | Adjusting for Autocorrelated Errors in Neural Networks for Time Series | Pytorch <br> <br> | NeurIPS 2021 |
Multivariable | Bytom <br> Decentraland <br> PEMS04 <br> PEMS08 | Z-GCNETs | Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting | Pytorch <br> <br> | ICML 2021 |
Multivariable | PEMS07(M) <br> METR-LA <br> PEMS-BAY | Cov | Conditional Temporal Neural Processes with Covariance Loss | None | ICML 2021 |
Multivariable | METR-LA <br> PEMS-BAY <br> PMU | GTS | Discrete Graph Structure Learning for Forecasting Multiple Time Series | Pytorch <br> <br> | ICLR 2021 |
Multivariable | Benz <br> Air Quality <br> FuelMoisture | framework | A Transformer-based Framework for Multivariate Time Series Representation Learning | Pytorch <br> <br> | KDD 2021 |
Federated Multivariable | PEMS-BAY <br> METR-LA | CNFGNN | Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling | Pytorch <br> <br> | KDD 2021 |
Traffic Speed | PEMS04 <br> PEMS08 <br> England | DMSTGCN | Dynamic and Multi-faceted Spatio-temporal Deep Learning for Traffic Speed Forecasting | Pytorch <br> <br> | KDD 2021 |
Traffic Flow | PEMS07(M) <br> PEMS07(L) <br> PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | STGODE | Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting | Pytorch <br> <br> | KDD 2021 |
Multivariable | BikeNYC <br> PEMS07(M) <br> Electricity | ST-Norm | ST-Norm: Spatial and Temporal Normalization for Multi-variate Time Series Forecasting | Pytorch <br> <br> | KDD 2021 |
Multivariable | DiDiXM <br> DiDiCD | TrajNet | TrajNet: A Trajectory-Based Deep Learning Model for Traffic Prediction | None | KDD 2021 |
Robust Forecasting | MIMIC-III <br> USHCN <br> KDD-CUP | DGM | Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series | Pytorch <br> <br> | AAAI 2021 |
Multivariable | Guangzhou <br> Seattle <br> HZMetro , etc. | DSARF | Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting | Pytorch <br> <br> | AAAI 2021 |
Traffic Speed | METR-LA <br> PEMS-BAY | FC-GAGA | FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting | TF <br> <br> | AAAI 2021 |
Traffic Speed | DiDiJiNan <br> DiDiXiAn | HGCN | Hierarchical Graph Convolution Network for Traffic Forecasting | Pytorch <br> <br> | AAAI 2021 |
Multivariable | ETT <br> Weather <br> Electricity | Informer | Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting | Pytorch <br> <br> | AAAI 2021 |
Traffic Flow | NYCMetro <br> NYC Bike <br> NYC Taxi | MOTHER | Modeling Heterogeneous Relations across Multiple Modes for Potential Crowd Flow Prediction | None | AAAI 2021 |
Multivariable | METR-LA <br> PEMS-BAY <br> PEMS07(M) <br> PEMS07(L) <br> PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | STFGNN | Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting | Mxnet <br> <br> | AAAI 2021 |
Multivariable | BJ Taxi <br> NYC Taxi <br> NYC Bike1 <br> NYC Bike2 | STGDN | Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network | Mxnet <br> <br> | AAAI 2021 |
Traffic Flow | SG-TAXI | TrGNN | Traffic Flow Prediction with Vehicle Trajectories | Pytorch <br> <br> | AAAI 2021 |
Multivariable | Road <br> POIs <br> SIGtraf | DMLM | Predicting Traffic Congestion Evolution: A Deep Meta Learning Approach | Future | IJCAI 2021 |
Multivariable | East Bay <br> METR-LA <br> US | D-DA-GRNN | EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time Series Forecasting | Pytorch <br> <br> | ICDE 2021 |
Multivariable | Water <br> Humidity <br> Wind, etc | EA-DRL | An Actor-Critic Ensemble Aggregation Model for Time-Series Forecasting | None | ICDE 2021 |
Traffic Flow | TaxiBJ <br> DiDiCD <br> TaxiRome | AttConvLSTM | Modeling Citywide Crowd Flows using Attentive Convolutional LSTM | None | ICDE 2021 |
Traffic Speed <br> Traffic Flow | METR-LA <br> PEMS-BAY <br> eMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08... | Benchmark | An Empirical Experiment on Deep Learning Models for Predicting Traffic Data | Future | ICDE 2021 |
Multivariable | Motes <br> Soil <br> Revenue <br> Traffic <br> 20CR | NET | Network of Tensor Time Series | Pytorch <br> <br> | WWW 2021 |
Multivariable | VevoMusic <br> WikiTraffic <br> LOS-LOOP <br> SZ-taxi | Radflow | Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series | Pytorch <br> <br> | WWW 2021 |
Multivariable | METR-LA <br> Wiki-EN | REST | REST: Reciprocal Framework for Spatiotemporal-coupled Predictions | None | WWW 2021 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 <br> HZMetro | ASTGNN | Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting | Pytorch <br> <br> | TKDE 2021 |
Multivariable | TaxiBJ <br> BikeNYC-I <br> BikeNYC-II <br> TaxiNYC <br> METR-LA <br> PEMS-BAY <br> PEMS07(M) | DL-Traff | DL-Traff: Survey and Benchmark of Deep Learning Models for Urban Traffic Prediction | Graph:PyTorch <br> Grid:TF <br> <br> | CIKM 2021 |
Multivariable | METR-LA <br> PEMS-BAY <br> PEMS07(M) | TorchGeoTem | PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models | PyTorch | CIKM 2021 |
Traffic Flow | TaxiBJ <br> BikeNYC | LLF | Learning to Learn the Future: Modeling Concept Drifts in Time Series Prediction | None | CIKM 2021 |
Multivariable | ETT <br> Electricity | HI | Historical Inertia: A Neglected but Powerful Baseline for Long Sequence Time-series Forecasting | None | CIKM 2021 |
Multivariable | ETT <br> ELE | AGCNT | AGCNT: Adaptive Graph Convolutional Network for Transformer-based Long Sequence Time-Series Forecasting | None | CIKM 2021 |
Cellular Traffic | cellular | MPGAT | Multivariate and Propagation Graph Attention Network for Spatial-Temporal Prediction with Outdoor Cellular Traffic | Pytorch <br> <br> <br> Future | CIKM 2021 |
Traffic Speed | METR-LA <br> PEMS-BAY <br> Simulated | STNN | Space Meets Time: Local Spacetime Neural Network For Traffic Flow Forecasting | Pytorch <br> <br> | ICDM 2021 |
Traffic Speed | DiDiCD <br> DiDiXiAn | T-wave | Trajectory WaveNet: A Trajectory-Based Model for Traffic Forecasting | Pytorch <br> <br> | ICDM 2021 |
Multivariable | Sanyo <br> Hanergy <br> Solar <br> Electricity <br> Exchange | SSDNet | SSDNet: State Space Decomposition Neural Network for Time Series Forecasting | Pytorch <br> <br> | ICDM 2021 |
Traffic Volumn | HangZhou City <br> JiNan City | CTVI | Temporal Multi-view Graph Convolutional Networks for Citywide Traffic Volume Inference | Pytorch <br> <br> | ICDM 2021 |
Traffic Volumn | Uber Movements <br> Grab-Posisi | TEST-GCN | TEST-GCN: Topologically Enhanced Spatial-Temporal Graph Convolutional Networks for Traffic Forecasting | None | ICDM 2021 |
Multivariable | Air Quality City <br> Meterology | ATGCN | Modeling Inter-station Relationships with Attentive Temporal Graph Convolutional Network for Air Quality Prediction | None | WSDM 2021 |
Traffic Flow | WalkWLA <br> BikeNYC <br> TaxiNYC | PDSTN | Predicting Crowd Flows via Pyramid Dilated Deeper Spatial-temporal Network | None | WSDM 2021 |
Traffic Flow | PEMS04 <br> PEMS08 | AGCRN | Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting | Pytorch <br> <br> | NeurIPS 2020 |
Multivariable | Electricity <br> Traffic <br> Wind <br> Solar <br> M4-Hourly | AST | Adversarial Sparse Transformer for Time Series Forecasting | Pytorch <br> <br> | NeurIPS 2020 |
Multivariable | METR-LA <br> PEMS-BAY <br> PEMS07 <br> PEMS03 <br> PEMS04 ,etc | StemGNN | Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting | Pytorch <br> <br> | NeurIPS 2020 |
Multivariable | M4 <br> M3 <br> Tourism | N-BEATS | N-BEATS: Neural basis expansion analysis for interpretable time series forecasting | Pytorch+Keras <br> <br> | ICLR 2020 |
Traffic Flow | Traffic <br> Energy <br> Electricity <br> Exchange <br> METR-LA <br> PEMS-BAY | MTGNN | Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks | Pytorch <br> <br> | KDD 2020 |
Traffic Flow | Taxi-NYC <br> Bike-NYC <br> CTM | DSAN | Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction | TF <br> <br> | KDD 2020 |
Traffic Speed <br> Traffic Flow | Shenzhen | Curb-GAN | Curb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Generative Adversarial Networks | Pytorch <br> <br> | KDD 2020 |
Traffic Flow | TaxiBJ <br> CrowdBJ <br> TaxiJN <br> TaxiGY | AutoST | AutoST: Efficient Neural Architecture Search for Spatio-Temporal Prediction | None | KDD 2020 |
Traffic Volumn | W3-715 <br> E5-2907 | HSTGCN | Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data | None | KDD 2020 |
Multivariable | Xiamen <br> PEMS-BAY | GMAN | GMAN: A Graph Multi-Attention Network for Traffic Prediction | TF<br> <br> <br> Pytorch | AAAI 2020 |
Multivariable | PEMS03 <br> PEMS04 <br> PEMS07 <br> PEMS08 | STSGCN | Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting | Mxnet <br> <br> <br> Pytorch <br> <br> | AAAI 2020 |
Multivariable | Traffic <br> Energy <br> NASDAQ | MLCNN | Towards Better Forecasting by Fusing Near and Distant Future Visions | Pytorch <br> <br> | AAAI 2020 |
Multivariable | PEMS-S <br> PEMS-BAY <br> METR-LA <br> BJF <br> BRF <br> BRF-L | SLCNN | Spatio-temporal graph structure learning for traffic forecasting | None | AAAI 2020 |
Traffic Speed | METR-LA <br> PEMS-BAY | MRA-BGCN | Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting | None | AAAI 2020 |
Metro Flow | HKMetro | WDGTC | Tensor Completion for Weakly-Dependent Data on Graph for Metro Passenger Flow Prediction | TF <br> <br> | AAAI 2020 |
Multivariable | MovingMNIST <br> TaxiBJ <br> KTH | SA-ConvLSTM | Self-Attention ConvLSTM for Spatiotemporal Prediction | TF <br> <br> <br> PyTorch | AAAI 2020 |
Metro Flow | SydneyMetro | MLC-PPF | Potential Passenger Flow Prediction-A Novel Study for Urban Transportation Development | None | AAAI 2020 |
Commuting Flow | Lodes <br> Pluto <br> OSRM | GMEL | Learning Geo-Contextual Embeddings for Commuting Flow Prediction | Pytorch <br> <br> | AAAI 2020 |
Multivariable | Traffic <br> Exchange <br> Solar | DeepTrends | Tensorized LSTM with Adaptive Shared Memory for Learning Trends in Multivariate Time Series | TF <br> <br> | AAAI 2020 |
Multivariable | Traffic <br> Electricity <br> SmokeVideo <br> PCSales <br> RawMaterials | BHT | Block Hankel Tensor ARIMA for Multiple Short Time Series Forecasting | Python <br> <br> | AAAI 2020 |
Traffic Speed | PEMS04 <br> PEMS07 <br> PEMS08 | LSGCN | LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks | TF <br> <br> | IJCAI 2020 |
Traffic Flow | BikeNYC <br> MobileBJ | CSCNet | A Sequential Convolution Network for Population Flow Prediction with Explicitly Correlation Modelling | None | IJCAI 2020 |
Multivariable | USDCNY <br> USDKRW <br> USDIDR | WATTNet | WATTNet: learning to trade FX via hierarchical spatio-temporal representation of highly multivariate time series | TF <br> <br> | IJCAI 2020 |
Fine-grained | CitiBikeNYC <br> Div <br> Metro | GACNN | Towards Fine-grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems | None | WWW 2020 |
Flow <br> Distribution | Austin <br> Louisville <br> Minneapolis | GCScoot | Dynamic Flow Distribution Prediction for Urban Dockless E-Scooter Sharing Reconfiguration | None | WWW 2020 |
Traffic Speed | METR-LA <br> PEMS-BAY | STGNN | Traffic Flow Prediction via Spatial Temporal Graph Neural Network | Pytorch <br> <br> | WWW 2020 |
Traffic Speed | DiDiCD | STAG-GCN | Spatiotemporal Adaptive Gated Graph Convolution Network for Urban Traffic Flow Forecasting | Pytorch <br> <br> | CIKM 2020 |
Traffic Speed | METR-LA <br> PEMS-BAY | ST-GRAT | ST-GRAT: A Novel Spatio-temporal Graph Attention Networks for Accurately Forecasting Dynamically Changing Road Speed | Pytorch <br> <br> | CIKM 2020 |
Traffic Flow | BJ-Taxi <br> NYC-Taxi <br> NYC-Bike-1 <br> NYC-Bike-2 | ST-CGA | Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting | Keras <br> <br> | CIKM 2020 |
Traffic Flow | NYCBike <br> NYCTaxi | MT-ASTN | Multi-task Adversarial Spatial-Temporal Networks for Crowd Flow Prediction | Pytorch <br> <br> | CIKM 2020 |
Traffic Speed | SFO <br> NYC | DIGC | Deep Graph Convolutional Networks for Incident-Driven Traffic Speed Prediction | None | CIKM 2020 |
Metro Flow | SZMetro <br> HZMetro | STP-TrellisNets | STP-TrellisNets: Spatial-Temporal Parallel TrellisNets for Metro Station Passenger Flow Prediction | None | CIKM 2020 |
Multivariable | Air Quality <br> BikeNYC <br> METR-LA | AGSTN | AGSTN: Learning Attention-adjusted Graph Spatio-Temporal Networks for Short-term Urban Sensor Value Forecasting | Keras <br> <br> | ICDM 2020 |
Traffic Speed | METR-LA <br> PEMS-BAY | FreqST | FreqST: Exploiting Frequency Information in Spatiotemporal Modeling for Traffic Prediction | None | ICDM 2020 |
Traffic Flow | PEMS03 <br> PEMS07 | TSSRGCN | Tssrgcn: Temporal spectral spatial retrieval graph convolutional network for traffic flow forecasting | None | ICDM 2020 |
Multivariable | Air Quality <br> DarkSky <br> Geographic | DeepLATTE | Building Autocorrelation-Aware Representations for Fine-Scale Spatiotemporal Prediction | Pytorch <br> <br> | ICDM 2020 |
Traffic Flow | XATaxi <br> BJTaxi <br> PortoTaxi | ST-PEFs | Interpretable Spatiotemporal Deep Learning Model for Traffic Flow Prediction Based on Potential Energy Fields | None | ICDM 2020 |
Traffic Speed <br> Flow | SZSpeed <br> SZTaxi | cST-ML | cST-ML: Continuous Spatial-Temporal Meta-Learning for Traffic Dynamics Prediction | Pytorch <br> <br> | ICDM 2020 |
Multivariable | Electricity <br> Traffic <br> Wiki <br> PEMS07(M) | DeepGLO | Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting | Pytorch <br> <br> | NeurIPS 2019 |
Multivariable | Electricity <br> Traffic <br> Solar <br> M4 <br> Wind | LogSparse | Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting | Pytorch <br> <br> | NeurIPS 2019 |
Multivariable | Synthetic <br> ECG5000 <br> Traffic | DILATE | Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models | Pytorch <br> <br> | NeurIPS 2019 |
Traffic Flow | Earthquake | DeepUrbanEvent | DeepUrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big Events | Keras <br> <br> | KDD 2019 |
Traffic Flow <br> Speed | TDrive <br> METR-LA | ST-MetaNet | Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning | Mxnet <br> <br> | KDD 2019 |
Multivariable | Rossman <br> Walmart <br> Electricity <br> Traffic <br> Parts | ARU | Streaming Adaptation of Deep Forecasting Models using Adaptive Recurrent Units | TF <br> <br> | KDD 2019 |
Multivariable | Air Quality | AccuAir | AccuAir: Winning Solution to Air Quality Prediction for KDD Cup 2018 | None | KDD 2019 |
Traffic Flow | Simulated <br> RoadTraffic <br> Wikipedia | ERMreg | Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions | None | KDD 2019 |
Multivariable <br> under event | Climate <br> Stock <br> Pseudo | EVL | Modeling Extreme Events in Time Series Prediction | None | KDD 2019 |
Traffic Flow | PEMS04 <br> PEMS08 <br> METR-LA | ASTGCN | Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting | Mxnet <br> <br> | AAAI 2019 |
Traffic Flow <br> Speed | NYC <br> PEMS0(M) | DGCNN | Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting | None | AAAI 2019 |
Traffic FLow | NYC-Taxi <br> NYC-Bike | STDN | Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction | Keras <br> <br> | AAAI 2019 |
Traffic Flow | MobileBJ <br> BikeNYC | DeepSTN+ | DeepSTN+: context-aware spatial-temporal neural network for crowd flow prediction in metropolis | TF <br> <br> | AAAI 2019 |
Traffic Speed | METR-LA <br> PEMS-BAY | Res-RGNN | Gated residual recurrent graph neural networks for traffic prediction | None | AAAI 2019 |
Traffic FLow | MetroBJ <br> BusBJ <br> TaxiBJ | GSTNet | GSTNet: Global Spatial-Temporal Network for Traffic Flow Prediction | Pytorch <br> <br> | IJCAI 2019 |
Traffic Speed | METR-LA <br> PEMS-BAY | GWN | Graph WaveNet for Deep Spatial-Temporal Graph Modeling | Pytorch <br> <br> | IJCAI 2019 |
Traffic Flow | DidiSY <br> BikeNYC <br> TaxiBJ | STG2Seq | STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting | TF <br> <br> | IJCAI 2019 |
Multivariable | GHL <br> Electricity <br>TEP | DyAt | DyAt Nets: Dynamic Attention Networks for State Forecasting in Cyber-Physical Systems | Pytorch <br> <br> | IJCAI 2019 |
Multivariable | Air Quality | MGED | Multi-Group Encoder-Decoder Networks to Fuse Heterogeneous Data for Next-Day Air Quality Prediction | None | IJCAI 2019 |
Traffic Volumn | Chicago <br> Boston | MetaST | Learning from Multiple Cities: A Meta-Learning Approach for Spatial-Temporal Prediction | TF <br> <br> | WWW 2019 |
TrafficPred <br> imputation | GZSpeed <br> HZMetro <br> Seattle <br> London | BTF | Bayesian Temporal Factorization for Multidimensional Time Series Prediction | Python <br> <br> | TPAMI 2019 |
Multivariable | Gas Station | DSANet | DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting | Pytorch <br> <br> | CIKM 2019 |
Multivariable | Solar <br> Traffic <br> Exchange <br> Electricity <br> PEMS ,etc | Study | Experimental Study of Multivariate Time Series Forecasting Models | None | CIKM 2019 |
Traffic Speed | DiDiCD <br> DiDiXA | BTRAC | Boosted Trajectory Calibration for Traffic State Estimation | None | ICDM 2019 |
Multivariable | Photovoltaic | MTEX-CNN | MTEX-CNN: Multivariate Time Series EXplanations for Predictions with Convolutional Neural Networks | Pytorch <br> <br> | ICDM 2019 |
Traffic Speed | BJER4 <br> PEMS07(M) <br> PEMS07(L) | STGCN | Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting | TF <br> <br> Mxnet Pytorch1 <br> <br> Pytorch2 Pytorch3 <br> <br> | IJCAI 2018 |
Traffic Speed | METR-LA <br> PEMS-BAY | DCRNN | Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting | TF <br> <br> Pytorch | ICLR 2018 |