Home

Awesome

<div align="center"> <h2>EasyRunner: Smoother Parallel Experiments</h2> </div> <div align="center">

<a>Python 3.8+</a> License PyPI

<!-- [![Downloads](https://static.pepy.tech/personalized-badge/easy-runner?period=total&left_color=grey&right_color=blue&left_text=downloads)](https://pepy.tech/project/easy-runner) --> <!-- [![GitHub Repo Stars](https://img.shields.io/github/stars/liuzuxin/dsrl?color=brightgreen&logo=github)](https://github.com/liuzuxin/dsrl/stargazers) --> <!-- [![Documentation Status](https://img.shields.io/readthedocs/fsrl?logo=readthedocs)](https://fsrl.readthedocs.io) --> <!-- [![CodeCov](https://codecov.io/github/liuzuxin/fsrl/branch/main/graph/badge.svg?token=BU27LTW9F3)](https://codecov.io/github/liuzuxin/fsrl) [![Tests](https://github.com/liuzuxin/fsrl/actions/workflows/test.yml/badge.svg)](https://github.com/liuzuxin/fsrl/actions/workflows/test.yml) --> <!-- [![CodeCov](https://img.shields.io/codecov/c/github/liuzuxin/fsrl/main?logo=codecov)](https://app.codecov.io/gh/liuzuxin/fsrl) --> <!-- [![tests](https://img.shields.io/github/actions/workflow/status/liuzuxin/fsrl/test.yml?label=tests&logo=github)](https://github.com/liuzuxin/fsrl/tree/HEAD/tests) --> </div>

EasyRunner is a lightweight tool for managing and executing multiple parallel experiments with minimum dependencies. It simplifies the process of running multiple experiments with different configurations or hyperparameters, while monitoring system resources.

Features

Installation

The simpliest way is to install via PyPI.

pip install easy_runner

Alternatively, you can also install from source, simply download or clone this repository and then:

git clone https://github.com/liuzuxin/easy-runner.git
cd easy-runner
pip install -e .

Usage

  1. Initialize an EasyRunner object with the required parameters.
  2. Specificy a list of commandline instructions to run.
  3. Use the start method to run experiments. You can specify a list of GPU IDs for running experiments (or None by default).
  4. Optionally, use the compose method to generate a list of instructions from a template and arguments.

A simple example for running a list of instructions (2 parallel) on cuda 0, 1:

from easy_runner import EasyRunner

# Initialize the EasyRunner
runner = EasyRunner(log_name="experiment_logs")

# Create a list of instructions
instructions = [
    "python script1.py --param1 0.1 --param2 100",
    "python script1.py --param1 0.2 --param2 200",
    "python script2.py --param1 0.3 --param2 300",
    "python script2.py --param1 0.4 --param2 400",
    "python script3.py --param1 0.5 --param2 500"
]

# Run experiments
runner.start(instructions, gpus=[0, 1], max_parallel=2)

Anoter example of how to use the compose feature to perform grid search:

from easy_runner import EasyRunner

# Initialize the EasyRunner
runner = EasyRunner(log_name="experiment_logs")

# List of seeds, and tasks
seeds = [0, 10, 20]
tasks = ["TaskA-v0 --epoch 30", "TaskB-v0 --epoch 150", "TaskC-v0 --epoch 80"]

# Define the command template
template = "nohup python train_script.py --project my_project --seed {} --task {} "

# Generate a list of instructions using the compose method
instructions = runner.compose(template, [agents, seeds, tasks])

# Run the experiments
runner.start(instructions, max_parallel=4)

You can try the example scripts in the examples folder:

cd examples
python test_easy_runner.py

Demo video:

<div align="center"> <img width="600px" height="auto" src="https://github.com/liuzuxin/easy-runner/raw/main/examples/demo.gif"> </div>

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contributing

There are still a lot of improvements could be done for this tool. We welcome any contributions to this project. Please open an issue or submit a pull request on the GitHub repository.

Feel free to customize this template according to your specific requirements or add any additional information you think would be helpful for users.