Home

Awesome

MiE-X

Introduction

This is an implementation of MiE-X by Pytorch. MiE-X is a large-scale synthetic dataset that improves data-driven micro-expression methods. MiE-X introduces three types of effective Actions Units (AUs) that constitute trainable micro-expressions. This repository provides the implementation of acquiring these AUs and using these AUs to obtain MiE-X.

<!-- ## Overview Overview of computing three types of Action Units. ![system overview](system.png "System overview of XX.") -->

Dependencies

MiE-X uses the same libraries as GANimation

Datasets

We make generated images from VehicleX directly. We have performed domain adaptation (both content level and style level) from VehicleX to VeRi-776, VehicleID and CityFlow respectively. They can be used to augment real-world data. The adaptated images can be downloaded the tabel below.

VariantMiE-X (MEGC)MiE-X (MMEW)MiE-X (Oulu)
AccessBaidu(pwd:nz36),GoogleBaidu(pwd:akjh),GoogleWebsite

Usage

Extract AUs by the OpenFace toolkit

python3 get_aus.py --persons_path PATH_TO_YOUR_VIDEOS

Simulate MiEs

use AU<sub>MiE</sub> to simulate

CUDA_VISIBLE_DEVICES=0 python3 simulate_realAU.py 

use AU<sub>MaE</sub> to simulate

CUDA_VISIBLE_DEVICES=0 python3 simulate_ck.py 

use AU<sub>exp</sub> to simulate

CUDA_VISIBLE_DEVICES=0 python3 simulate_data.py