Home

Awesome

Learnable Motion Coherence for Correspondence Pruning <br> Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang <br> Project Page

Any questions or discussions are welcomed!

Requirements & Compilation

  1. Requirements

Required packages are listed in requirements.txt.

The code is tested using Python-3.8.5 with PyTorch 1.7.1.

  1. Compile extra modules
cd network/knn_search
python setup.py build_ext --inplace
cd ../pointnet2_ext
python setup.py build_ext --inplace
cd ../../utils/extend_utils
python build_extend_utils_cffi.py

According to your installation path of CUDA, you may need to revise the variables cuda_version in build_extend_utils_cffi.py.

Datasets & Pretrain Models

  1. Download the YFCC100M dataset and the SUN3D dataset from the OANet repository and the ScanNet dataset from here.

  2. Download pretrained LMCNet models from here and SuperGlue/SuperPoint models from here. (geometry-only models are available at here.)

  3. Unzip and arrange all files like the following.

data/
├── superpoint/
    └── superpoint_v1.pth
├── superglue/
    ├── superglue_indoor.pth
    └── superglue_outdoor.pth
├── model/
    ├── lmcnet_sift_indoor/
    ├── lmcnet_sift_outdoor/
    ├── lmcnet_sift_indoor_geom/
    ├── lmcnet_sift_outdoor_geom/
    └── lmcnet_spg_indoor/
├── yfcc100m/
├── sun3d_test/
├── sun3d_train/
├── scannet_dataset/
├── pairs/ # this was extracted from the dataset downloaded from OANet repository.
└── scannet_train_dataset/

Evaluation

Evaluate on the YFCC100M with SIFT descriptors and Nearest Neighborhood (NN) matcher:

python eval.py --name scannet --cfg configs/eval/lmcnet_sift_yfcc.yaml

Evaluate on the YFCC100M with SIFT descriptors and Nearest Neighborhood (NN) matcher using the geometry-only model:

python eval.py --name scannet --cfg configs/eval/lmcnet_sift_yfcc_geom.yaml

Evaluate on the SUN3D with SIFT descriptors and NN matcher:

python eval.py --name sun3d --cfg configs/eval/lmcnet_sift_sun3d.yaml

Evaluate on the ScanNet with SuperPoint descriptors and SuperGlue matcher:

python eval.py --name scannet --cfg configs/eval/lmcnet_spg_scannet.yaml

Training

  1. Generate training dataset for training on YFCC100M with SIFT descriptor and NN matcher.
python trainset_generate.py \
      --ext_cfg configs/detector/sift.yaml \
      --match_cfg configs/matcher/nn.yaml \
      --output data/yfcc_train_cache \
      --eig_name small_min \
      --prefix yfcc
  1. Model training.
python train_model.py --cfg configs/lmcnet/lmcnet_sift_outdoor_train.yaml

Citation

@inproceedings{liu2021learnable,
  title={Learnable Motion Coherence for Correspondence Pruning},
  author={Liu, Yuan and Liu, Lingjie and Lin, Cheng and Dong, Zhen and Wang, Wenping},
  booktitle={CVPR}
  year={2021}
}

Acknowledgement

We have used codes from the following repositories, and we thank the authors for sharing their codes.

SuperGlue: https://github.com/magicleap/SuperGluePretrainedNetwork

OANet: https://github.com/zjhthu/OANet

KNN-CUDA: https://github.com/vincentfpgarcia/kNN-CUDA

Pointnet2.PyTorch: https://github.com/sshaoshuai/Pointnet2.PyTorch