Awesome
EDIS (Energy-Guided Diffusion Sampling for Offline-to-Online Reinforcement Learning)
This repo contains the code of Energy-guided DIffusion Sampling (EDIS) algorithm, proposed by Energy-Guided Diffusion Sampling for Offline-to-Online Reinforcement Learning.
EDIS utilizes a diffusion model to extract prior knowledge from the offline dataset and employs energy functions to distill this knowledge for enhanced data generation in the online phase. The generated samples confirm online fine-tuning distribution without oblivion of transition fidelity.
Getting started
Install MuJoCo.
- Download MuJoCo Key and MuJoCo 2.1 binaries
- Extract the downloaded
mujoco210
andmjkey.txt
into~/.mujoco/mujoco210
and~/.mujoco/mjkey.txt
Add the following environment variables into ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco210/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia
Install Anaconda environment.
To install the necessary environments, we use
conda create -n edis python=3.8
conda activate edis
pip install -r requirements/requirements_dev.txt
Run the code.
To run the Cal-ql-EDIS or IQL-EDIS, use the command
python -u algorithms/iql_edis.py --env hopper-random-v2 --state_guide --policy_guide --transition_guide --seed 48
or
python -u algorithms/cal_ql_edis.py --env hopper-random-v2 --state_guide --policy_guide --transition_guide --seed 48
Built upon CORL
Our EDIS is built upon CORL, please refer to https://github.com/tinkoff-ai/CORL