Home

Awesome

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Deep Learning to Improve Breast Cancer Detection on Screening Mammography (End-to-end Training for Whole Image Breast Cancer Screening using An All Convolutional Design)

Li Shen, Ph.D. CS

Icahn School of Medicine at Mount Sinai

New York, New York, USA

Fig1

Introduction

This is the companion site for our paper that was originally titled "End-to-end Training for Whole Image Breast Cancer Diagnosis using An All Convolutional Design" and was retitled as "Deep Learning to Improve Breast Cancer Detection on Screening Mammography". The paper has been published here. You may also find the arXiv version here. This work was initially presented at the NIPS17 workshop on machine learning for health. Access the 4-page short paper here. Download the poster.

For our entry in the DREAM2016 Digital Mammography challenge, see this write-up. This work is much improved from our method used in the challenge.

Whole image model downloads

A few best whole image models are available for downloading at this Google Drive folder. YaroslavNet is the DM challenge top-performing team's method. Here is a table for model AUCs:

DatabasePatch ClassifierTop Layers (two blocks)Single AUCAugmented AUC
DDSMResnet50[512-512-1024]x20.860.88
DDSMVGG16512x10.830.86
DDSMVGG16[512-512-1024]x20.850.88
DDSMYaroslavNetheatmap + max pooling + FC16-8 + shortcut0.830.86
INbreastVGG16512x10.920.94
INbreastVGG16[512-512-1024]x20.950.96

Patch classifier model downloads

Several patch classifier models (i.e. patch state) are also available for downloading at this Google Drive folder. Here is a table for model acc:

ModelTrain SetAccuracy
Resnet50S100.89
VGG16S100.84
VGG19S100.79
YaroslavNet (Final)S100.89
Resnet50S300.91
VGG16S300.86
VGG19S300.89

With patch classifier models, you can convert them into any whole image classifier by adding convolutional, FC and heatmap layers on top and see for yourself.

A bit explanation of this repository's file structure

Some input files' format

I've got a lot of requests asking about the format of some input files. Here I provide the first few lines and hope they can be helpful:

roi_mask_path.csv

patient_id,side,view,abn_num,pathology,type
P_00005,RIGHT,CC,1,MALIGNANT,calc
P_00005,RIGHT,MLO,1,MALIGNANT,calc
P_00007,LEFT,CC,1,BENIGN,calc
P_00007,LEFT,MLO,1,BENIGN,calc
P_00008,LEFT,CC,1,BENIGN_WITHOUT_CALLBACK,calc

pat_train.txt

P_00601
P_00413
P_01163
P_00101
P_01122

Transfer learning is as easy as 1-2-3

In order to transfer a model to your own data, follow these easy steps.

Determine the rescale factor

The rescale factor is used to rescale the pixel intensities so that the max value is 255. For PNG format, the max value is 65535, so the rescale factor is 255/65535 = 0.003891. If your images are already in the 255 scale, set rescale factor to 1.

Calculate the pixel-wise mean

This is simply the mean pixel intensity of your train set images.

Image size

This is currently fixed at 1152x896 for the models in this study. However, you can change the image size when converting from a patch classifier to a whole image classifier.

Finetune

Now you can finetune a model on your own data for cancer predictions! You may check out this shell script. Alternatively, copy & paste from here:

TRAIN_DIR="INbreast/train"
VAL_DIR="INbreast/val"
TEST_DIR="INbreast/test"
RESUME_FROM="ddsm_vgg16_s10_[512-512-1024]x2_hybrid.h5"
BEST_MODEL="INbreast/transferred_inbreast_best_model.h5"
FINAL_MODEL="NOSAVE"
export NUM_CPU_CORES=4

python image_clf_train.py \
    --no-patch-model-state \
    --resume-from $RESUME_FROM \
    --img-size 1152 896 \
    --no-img-scale \
    --rescale-factor 0.003891 \
    --featurewise-center \
    --featurewise-mean 44.33 \
    --no-equalize-hist \
    --batch-size 4 \
    --train-bs-multiplier 0.5 \
    --augmentation \
    --class-list neg pos \
    --nb-epoch 0 \
    --all-layer-epochs 50 \
    --load-val-ram \
    --load-train-ram \
    --optimizer adam \
    --weight-decay 0.001 \
    --hidden-dropout 0.0 \
    --weight-decay2 0.01 \
    --hidden-dropout2 0.0 \
    --init-learningrate 0.0001 \
    --all-layer-multiplier 0.01 \
    --es-patience 10 \
    --auto-batch-balance \
    --best-model $BEST_MODEL \
    --final-model $FINAL_MODEL \
    $TRAIN_DIR $VAL_DIR $TEST_DIR

Some explanations of the arguments:

Computational environment

The research in this study is carried out on a Linux workstation with 8 CPU cores and a single NVIDIA Quadro M4000 GPU with 8GB memory. The deep learning framework is Keras 2 with Tensorflow as the backend.

About Keras version

It is known that Keras >= 2.1.0 can give errors due an API change. See issue #7. Use Keras with version < 2.1.0. For example, Keras=2.0.8 is known to work.

TERMS OF USE

All data is free to use for non-commercial purposes. For commercial use please contact MSIP.