Home

Awesome

OCHuman(Occluded Human) Dataset Api

Dataset proposed in "Pose2Seg: Detection Free Human Instance Segmentation" [ProjectPage] [arXiv] @ CVPR2019.

<div align="center"> <img src="figures/dataset.jpg" width="1000px"/> <p> Samples of OCHuman Dataset</p> </div>

This dataset focus on heavily occluded human with comprehensive annotations including bounding-box, humans pose and instance mask. This dataset contains 13360 elaborately annotated human instances within 5081 images. With average 0.573 MaxIoU of each person, OCHuman is the most complex and challenging dataset related to human. Through this dataset, we want to emphasize occlusion as a challenging problem for researchers to study.

Statistics

All the instances in this dataset are annotated by bounding-box. While not all of them have the keypoint/mask annotation. If you want to compare your results with ours in the paper, please use the subset that contains both keypoint and mask annotations (4731 images, 8110 persons).

bboxkeypointmaskkeypoint&maskbbox&keypoint&mask
#Images50815081473147314731
#Persons1336010375811081108110
#mMaxIou0.5730.6700.6690.6690.669

Note:

Download Links

In the above link, we also provide the coco style annotations (val and test subset) so that you can run evaluation using cocoEval toolbox.

Update at 2019.06.14: Please download annotation files (*json) again to match the val/test split used in our paper.

Install API

git clone https://github.com/liruilong940607/OCHumanApi
cd OCHumanApi
make install

How to use

See Demo.ipynb