Awesome
libLLM: Efficient inference of large language models.
Welcome to libLLM, an open-source project designed for efficient inference of large language models (LLM) on ordinary personal computers and mobile devices. The core is implemented in C++14, without any third-party dependencies (such as BLAS or SentencePiece), enabling seamless operation across a variety of devices.
欢迎使用libLLM,这是一个专为在普通个人电脑和移动设备上高效推理大型语言模型(LLM)而设计的开源项目。核心使用C++14编写,没有第三方依赖(BLAS、SentencePiece等),能在各种设备中无缝运行。
Model download:
Model | Download | llm Command |
---|---|---|
Index-1.9B-Character (Role-playing) | [🤗HF] [MS] | llm chat -m index:character |
Index-1.9B-Chat | [🤗HF] [MS] | llm chat -m index |
Qwen2-1.5B-Instruct | [🤗HF] [MS] | llm chat -m qwen:1.5b |
Qwen2-7B-Instruct | [🤗HF] [MS] | llm chat -m qwen:7b |
Llama3.2-1B-Instruct | [🤗HF] [MS] | llm chat -m llama3.2:1b |
Llama3.2-3B-Instruct | [🤗HF] [MS] | llm chat -m llama3.2 |
Whisper-large-v3 | [🤗HF] [MS] | llm transcribe -m whisper |
HF
= HuggingFace, MS
= ModelScope
Kernel support matrix
OS | Platform | CUDA | avx2 | avx512 | asimdhp |
---|---|---|---|---|---|
Linux | x64 | ✅ | ✅ | ✅ | |
Windows | x64 | ✅ | ✅ | ✅ | |
macOS | arm64 | ✅ |
Recent updates
- [2024-09-28] Support Llama3.2 models.
- [2024-08-12] Support Whisper models.
- [2024-08-02] Support the translation command in llm.
- [2024-07-30] Support model downloading from huggingface. For example,
llm chat -model index-character
will automatically download theindex-character
model from 🤗Huggingface.
Quickstart
To run and chat with Bilibili-Index-1.9B-Character:
$ llm chat -m index-character
It will automatically download the Bilibili-Index-1.9B-Character
from Huggingface or ModelScope (in China), and start the chat CLI in llm.
开始
与Bilibili-Index-1.9B-Character
模型聊天:
$ llm chat -m index-character
llm
会自动从Huggingface或者ModelScope(如果是中国IP)下载模型Bilibili-Index-1.9B-Character
, 并且开始与它对话。
llm command line
$ src/libllm/llm chat -m index-character
INFO 2024-07-30T12:02:28Z interface.cc:67] ISA support: AVX2=1 F16C=1 AVX512F=1
INFO 2024-07-30T12:02:28Z interface.cc:71] Use Avx512 backend.
INFO 2024-07-30T12:02:30Z matmul.cc:43] Use GEMM from cuBLAS.
INFO 2024-07-30T12:02:30Z cuda_operators.cc:51] cuda numDevices = 2
INFO 2024-07-30T12:02:30Z cuda_operators.cc:52] cuda:0 maxThreadsPerMultiProcessor = 2048
INFO 2024-07-30T12:02:30Z cuda_operators.cc:54] cuda:0 multiProcessorCount = 20
INFO 2024-07-30T12:02:30Z thread_pool.cc:73] ThreadPool started. numThreads=20
INFO 2024-07-30T12:02:30Z llm.cc:204] read model package: /home/xiaoych/.libllm/models/bilibili-index-1.9b-character-q4.llmpkg
INFO 2024-07-30T12:02:30Z model_for_generation.cc:43] model_type = index
INFO 2024-07-30T12:02:30Z model_for_generation.cc:44] device = cuda
INFO 2024-07-30T12:02:31Z state_map.cc:66] 220 tensors read.
Please input your question.
Type ':new' to start a new session (clean history).
Type ':sys <system_prompt>' to set the system prompt and start a new session .
> hi
您好!我是Index,请问有什么我可以帮助您的吗?
(12 tokens, time=0.76s, 63.47ms per token)
>
Build
libLLM CPU only
$ mkdir build && cd build
$ cmake ..
$ make -j
For macOS
Please brew install OpenMP before cmake. NOTE: currently libllm macOS expected to be very slow since there is no aarch64 kernel for it.
% brew install libomp
% export OpenMP_ROOT=$(brew --prefix)/opt/libomp
% mkdir build && cd build
% cmake ..
% make -j
Build with CUDA
NOTE: specify -DCUDAToolkit_ROOT=<CUDA-DIR>
if there is multiple CUDA versions in your OS.
Recommand versions are:
- CUDA: 11.7
$ mkdir build && cd build
$ cmake -DWITH_CUDA=ON [-DCUDAToolkit_ROOT=<CUDA-DIR>] ..
$ make -j
API Examples
Python
from libllm import Model, ControlToken
model = Model("tools/bilibili_index.llmpkg")
prompt = [ControlToken("<|reserved_0|>"), "hi", ControlToken("<|reserved_1|>")]
for chunk in model.complete(prompt):
print(chunk.text, end="", flush=True)
print("\nDone!")
Go
package main
import (
"fmt"
"log"
"github.com/ling0322/libllm/go/llm"
)
func main() {
model, err := llm.NewModel("../../tools/bilibili_index.llmpkg", llm.Auto)
if err != nil {
log.Fatal(err)
}
prompt := llm.NewPrompt()
prompt.AppendControlToken("<|reserved_0|>")
prompt.AppendText("hi")
prompt.AppendControlToken("<|reserved_1|>")
comp, err := model.Complete(llm.NewCompletionConfig(), prompt)
if err != nil {
log.Fatal(err)
}
for comp.IsActive() {
chunk, err := comp.GenerateNextChunk()
if err != nil {
log.Fatal(err)
}
fmt.Print(chunk.Text)
}
fmt.Println()
}
Export Huggingface models
Here is an example of exporting Index-1.9B model from huggingface.
$ cd tools
$ python bilibili_index_exporter.py \
-huggingface_name IndexTeam/Index-1.9B-Character \
-quant q4 \
-output index.llmpkg
Then all required modules realted to IndexTeam/Index-1.9B-Character
, including model, tokenizer and configs will be written to index.llmpkg
.