Home

Awesome

<h1 align="center">Lilac</h1> <h3 align="center" style="font-size: 20px; margin-bottom: 4px">Better data, better AI</h3> <p align="center"> <a style="padding: 4px;" href="https://lilacai-lilac.hf.space/"> <span style="margin-right: 4px; font-size: 12px">🔗</span> <span style="font-size: 14px">Try the Lilac web demo!</span> </a> <br/><br/> <a href="https://lilacml.com/"> <img alt="Site" src="https://img.shields.io/badge/Site-lilacml.com-ed2dd0?link=https%3A%2F%2Flilacml.com"/> </a> <a href="https://discord.gg/jNzw9mC8pp"> <img alt="Discord" src="https://img.shields.io/discord/1135996772280451153?label=Join%20Discord" /> </a> <a href="https://github.com/lilacai/lilac/blob/main/LICENSE"> <img alt="License Apache 2.0" src="https://img.shields.io/badge/License-Apache 2.0-blue.svg?style=flat&color=ed2dd0" height="20" width="auto"> </a> <br/> <a href="https://github.com/lilacai/lilac"> <img src="https://img.shields.io/github/stars/lilacai/lilac?style=social" /> </a> <a href="https://twitter.com/lilac_ai"> <img src="https://img.shields.io/twitter/follow/lilac_ai" alt="Follow on Twitter" /> </a> </p>

Lilac is a tool for exploration, curation and quality control of datasets for training, fine-tuning and monitoring LLMs.

Lilac is used by companies like Cohere and Databricks to visualize, quantify and improve the quality of pre-training and fine-tuning data.

Lilac runs on-device using open-source LLMs with a UI and Python API.

🆒 New

Why use Lilac?

Lilac can offload expensive computations to Lilac Garden, our hosted platform for blazing fast dataset-level computations.

<img alt="image" src="docs/_static/dataset/dataset_cluster_view.png">

See our 3min walkthrough video

🔥 Getting started

💻 Install

pip install lilac[all]

If you prefer no local installation, you can duplicate our Spaces demo by following documentation here.

For more detailed instructions, see our installation guide.

🌐 Start a webserver

Start a Lilac webserver with our lilac CLI:

lilac start ~/my_project

Or start the Lilac webserver from Python:

import lilac as ll

ll.start_server(project_dir='~/my_project')

This will open start a webserver at http://localhost:5432/ where you can now load datasets and explore them.

Lilac Garden

Lilac Garden is our hosted platform for running dataset-level computations. We utilize powerful GPUs to accelerate expensive signals like Clustering, Embedding, and PII. Sign up to join the pilot.

📊 Load data

Datasets can be loaded directly from HuggingFace, Parquet, CSV, JSON, LangSmith from LangChain, SQLite, LLamaHub, Pandas, Parquet, and more. More documentation here.

import lilac as ll

ll.set_project_dir('~/my_project')
dataset = ll.from_huggingface('imdb')

If you prefer, you can load datasets directly from the UI without writing any Python:

<img width="600" alt="image" src="https://github.com/lilacai/lilac/assets/1100749/d5d385ce-f11c-47e6-9c00-ea29983e24f0">

🔎 Explore

<!-- prettier-ignore -->

[!NOTE] 🔗 Explore OpenOrca and its clusters before installing!

Once we've loaded a dataset, we can explore it from the UI and get a sense for what's in the data. More documentation here.

<img alt="image" src="docs/_static/dataset/dataset_explore.png">

✨ Clustering

Cluster any text column to get automated dataset insights:

dataset = ll.get_dataset('local', 'imdb')
dataset.cluster('text') # add `use_garden=True` to offload to Lilac Garden
<!-- prettier-ignore -->

[!TIP] Clustering on device can be slow or impractical, especially on machines without a powerful GPU or large memory. Offloading the compute to Lilac Garden, our hosted data processing platform, can speedup clustering by more than 100x.

<img alt="image" src="docs/_static/dataset/dataset_cluster_view.png">

⚡ Annotate with Signals (PII, Text Statistics, Language Detection, Neardup, etc)

Annotating data with signals will produce another column in your data.

dataset = ll.get_dataset('local', 'imdb')
dataset.compute_signal(ll.LangDetectionSignal(), 'text') # Detect language of each doc.

# [PII] Find emails, phone numbers, ip addresses, and secrets.
dataset.compute_signal(ll.PIISignal(), 'text')

# [Text Statistics] Compute readability scores, number of chars, TTR, non-ascii chars, etc.
dataset.compute_signal(ll.PIISignal(), 'text')

# [Near Duplicates] Computes clusters based on minhash LSH.
dataset.compute_signal(ll.NearDuplicateSignal(), 'text')

# Print the resulting manifest, with the new field added.
print(dataset.manifest())

We can also compute signals from the UI:

<img width="400" alt="image" src="docs/_static/dataset/dataset_compute_signal_modal.png">

🔎 Search

Semantic and conceptual search requires computing an embedding first:

dataset.compute_embedding('gte-small', path='text')

Semantic search

In the UI, we can search by semantic similarity or by classic keyword search to find chunks of documents similar to a query:

<img width="600" alt="image" src="https://github.com/lilacai/lilac/assets/1100749/4adb603e-8dca-43a3-a492-fd862e194a5a"> <img width="600" alt="image" src="https://github.com/lilacai/lilac/assets/1100749/fdee2127-250b-4e06-9ff9-b1023c03b72f">

We can run the same search in Python:

rows = dataset.select_rows(
  columns=['text', 'label'],
  searches=[
    ll.SemanticSearch(
      path='text',
      embedding='gte-small')
  ],
  limit=1)

print(list(rows))

Conceptual search

Conceptual search is a much more controllable and powerful version of semantic search, where "concepts" can be taught to Lilac by providing positive and negative examples of that concept.

Lilac provides a set of built-in concepts, but you can create your own for very specif

<img width="600" alt="image" src="https://github.com/lilacai/lilac/assets/1100749/9941024b-7c24-4d87-ae46-925f8da435e1">

We can create a concept in Python with a few examples, and search by it:

concept_db = ll.DiskConceptDB()
db.create(namespace='local', name='spam')
# Add examples of spam and not-spam.
db.edit('local', 'spam', ll.concepts.ConceptUpdate(
  insert=[
    ll.concepts.ExampleIn(label=False, text='This is normal text.'),
    ll.concepts.ExampleIn(label=True, text='asdgasdgkasd;lkgajsdl'),
    ll.concepts.ExampleIn(label=True, text='11757578jfdjja')
  ]
))

# Search by the spam concept.
rows = dataset.select_rows(
  columns=['text', 'label'],
  searches=[
    ll.ConceptSearch(
      path='text',
      concept_namespace='lilac',
      concept_name='spam',
      embedding='gte-small')
  ],
  limit=1)

print(list(rows))

🏷️ Labeling

Lilac allows you to label individual points, or slices of data: <img width="600" alt="image" src="docs/_static/dataset/dataset_add_label_tag.png">

We can also label all data given a filter. In this case, adding the label "short" to all text with a small amount of characters. This field was produced by the automatic text_statistics signal.

<img width="600" alt="image" src="docs/_static/dataset/dataset_add_label_all_short.png">

We can do the same in Python:

dataset.add_labels(
  'short',
  filters=[
    (('text', 'text_statistics', 'num_characters'), 'less', 1000)
  ]
)

Labels can be exported for downstream tasks. Detailed documentation here.

💬 Contact

For bugs and feature requests, please file an issue on GitHub.

For general questions, please visit our Discord.