Home

Awesome

Deep Learning Methods for Multi-modal Remote Sensing Classification

authorlast commitlicense

Open In Colab

Houston2013

MMRS is a python tool to perform deep learning experiments on multi-modal remote sensing data.

This repository is developed on the top of DeepHyperX .

Models

Currently, the following deep learning methods are available:

Datasets

Quickstart using Colab

You can use MMRS on Google Colab Notebook without any installation. You can run all cells without any modifications to see how everything works.

Usage

Start a Visdom server: python -m visdom.server and go to http://localhost:8097 to see the visualizations.

Then, run the script main.py.

The most useful arguments are:

There are more parameters that can be used to control more finely the behaviour of the tool. See python main.py -h for more information.

Examples:

!python main.py --model S2ENet --flip_augmentation --patch_size 7 --epoch 128 --lr 0.001 --batch_size 64 --seed 0 --dataset Houston2013 --folder '../' --train_set '../Houston2013/TRLabel.mat' --test_set '../Houston2013/TSLabel.mat' --cuda 0

For more features please refer to DeepHyperX.

Citation

If you find this work valuable or use our code in your own research, please consider citing us:

S. Fang, K. Li and Z. Li, "S²ENet: Spatial–Spectral Cross-Modal Enhancement Network for Classification of Hyperspectral and LiDAR Data," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 6504205, doi: 10.1109/LGRS.2021.3121028.

Bibtex format :

@ARTICLE{9583936, author={Fang, Sheng and Li, Kaiyu and Li, Zhe}, journal={IEEE Geoscience and Remote Sensing Letters}, title={S²ENet: Spatial–Spectral Cross-Modal Enhancement Network for Classification of Hyperspectral and LiDAR Data}, year={2022}, volume={19}, number={}, pages={1-5}, doi={10.1109/LGRS.2021.3121028}}