Awesome
LNL-NCE
A pytorch implementation for "Neighborhood Collective Estimation for Noisy Label Identification and Correction", accepted by ECCV2022. More details of this work can be found in our paper: Arxiv or ECCV2022.
Installation
Refer to DivideMix.
Model training
(1) To run training on CIFAR-10/CIFAR-100 with different noise modes (namely sym or asym) and various noise ratios (namely 0.20, 0.50, 0.80, 0.90, etc.),
CUDA_VISIBLE_DEVICES=0 python ./cifar/main.py --dataset cifar10 --num_class 10 --batch_size 128 --data_path ./data/cifar-10/ --r 0.50 --noise_mode sym --remark exp-ID
CUDA_VISIBLE_DEVICES=0 python ./cifar/main.py --dataset cifar100 --num_class 100 --batch_size 128 --data_path ./data/cifar-100/ --r 0.50 --noise_mode sym --remark exp-ID
(2) To run training on Webvision-1.0,
CUDA_VISIBLE_DEVICES=0,1,2 python ./webvision/main.py --data_path ./data/webvision/ --remark exp-ID
Citation
If you consider using this code or its derivatives, please consider citing:
@inproceedings{li2022neighborhood,
title={Neighborhood Collective Estimation for Noisy Label Identification and Correction},
author={Li, Jichang and Li, Guanbin and Liu, Feng and Yu, Yizhou},
booktitle={European Conference on Computer Vision},
pages={128--145},
year={2022},
organization={Springer}
}
Contact
Please feel free to contact the first author, namely Li Jichang, with an Email address li.jichang@foxmail.com, if you have any questions.