Awesome
unify-easy-llm(ULM)
本项目基于Firefly改造旨在打造一个简易的一键式大模型训练工具,支持Nvidia GPU、Ascend NPU等不同硬件以及常用的大模型。
微调方法
- 全量微调
- LoRA微调
- QLoRA微调(仅GPU)
支持的模型
- baichuan/baichuan2
- qwen/qwen1.5/qwen2
- glm3/glm4
支持的硬件
- Nvidia GPU: A800、H800、RTX 3090、RTX 4090
- Ascend NPU: 910A、910B
环境安装
Ascend NPU
Nvidia GPU
- 安装GPU驱动。
- 需预先安装 Docker。安装教程
训练脚本
全参微调
Nvidia GPU
物理机运行:
/bin/bash /app/scripts/local_run_unify_sft_gpu.sh
Docker运行:
sudo docker run -it --rm --gpus all \
--shm-size 4G \
-v /data/hpc/home/guodong.li/workspace/temp:/home/guodong.li/workspace/temp \
--env PYTHONPATH=/usr/local/py-env-low/local/lib/python3.10/dist-packages:$PYTHONPATH \
--env PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128 \
--env CUDA_VISIBLE_DEVICES=6 \
harbor.llm.io/base/llm-train-unify:v1-20240603-cuda124 \
/bin/bash /app/scripts/local_run_unify_sft_gpu.sh
Ascend NPU
docker run -it -u root \
--network host \
--shm-size 4G \
-e ASCEND_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
-v /etc/localtime:/etc/localtime \
-v /var/log/npu/:/usr/slog \
-v /usr/bin/hccn_tool:/usr/bin/hccn_tool \
-v /data/containerd/workspace/:/workspace \
harbor.llm.io/base/llm-train-unify:v1-20240603 \
/bin/bash -c '. ~/.bashrc && conda activate llm-dev && sh /workspace/llm-train/scipts/local_run_unify_sft_npu.sh'
LoRA
Nvidia GPU
物理机运行:
CUDA_VISIBLE_DEVICES=5 /bin/bash ./scripts/local_run_unify_lora_gpu.sh
Docker运行:
sudo docker run -it --rm --gpus all \
--shm-size 4G \
-v /data/hpc/home/guodong.li/workspace/temp:/home/guodong.li/workspace/temp \
--env PYTHONPATH=/usr/local/py-env-low/local/lib/python3.10/dist-packages:$PYTHONPATH \
--env PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128 \
--env CUDA_VISIBLE_DEVICES=7 \
harbor.llm.io/base/llm-train-unify:v1-20240603-cuda124 \
/bin/bash /app/scripts/local_run_unify_lora_gpu.sh
Ascend NPU:
docker run -it -u root \
--network host \
--shm-size 4G \
-e ASCEND_VISIBLE_DEVICES=0,1,2,3 \
-v /etc/localtime:/etc/localtime \
-v /var/log/npu/:/usr/slog \
-v /usr/bin/hccn_tool:/usr/bin/hccn_tool \
-v /data/containerd/workspace/:/workspace \
harbor.llm.io/base/llm-train-unify:v1-20240603 \
/bin/bash -c '. ~/.bashrc && conda activate llm-dev && sh /workspace/llm-train/scipts/local_run_unify_lora_npu.sh'