Home

Awesome

<img src="_static/lighton_small.png" width=60/> RITA: a Study on Scaling Up Generative Protein Sequence Models

GitHub license Twitter

RITA is a family of autoregressive protein models, developed by a collaboration of Lighton, the OATML group at Oxford, and the Debbie Marks Lab at Harvard.

Model#Paramsd_modellayerslm loss uniref-100
Small85M768122.31
Medium300M1024242.01
Large680M1536241.82
XLarge1.2B2048241.70

Results

<p align="center"> <img src="_static/perplexity.png" width=800/> </p>

For full results see our preprint: https://arxiv.org/abs/2205.05789

Usage

Instantiate a model like so:

from transformers import AutoModel, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("lightonai/RITA_s", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("lightonai/RITA_s")

for generation we support pipelines:

from transformers import pipeline
rita_gen = pipeline('text-generation', model=model, tokenizer=tokenizer)
sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, 
                     num_return_sequences=2, eos_token_id=2)
for seq in sequences:
    print(f"seq: {seq['generated_text'].replace(' ', '')}")

Or see example.py

How to cite

@article{hesslow2022rita,
  title={RITA: a Study on Scaling Up Generative Protein Sequence Models},
  author={Hesslow, Daniel and Zanichelli, Niccol{\'o} and Notin, Pascal and Poli, Iacopo and Marks, Debora},
  journal={arXiv preprint arXiv:2205.05789},
  year={2022}
}