Home

Awesome

DENet: Disentangled Embedding Network for Visible Watermark Removal

This is official implementation for paper DENet: Disentangled Embedding Network for Visible Watermark Removal [AAAI2023 Oral]

<img src='imgs/framework.png'>

Dataset preparation

|--data
|--|--LOGO
   |--|--10kmid
   |--|--10kgray
   |--|--10khigh

Pretrained Model

PSNRSSIMLPIPS
LOGO-L44.240.99540.54
LOGO-H40.830.99190.89
LOGO-Gray42.600.99440.53

Installation

pip install -r requirements.txt

Training

Train on LOGO-H

bash scripts/train_contrast_attention_on_logo_high.sh 

Train on LOGO-L

bash scripts/train_contrast_attention_on_logo_mid.sh 

Train on LOGO-Gray

bash scripts/train_contrast_attention_on_logo_gray.sh

Testing

Test on LOGO-H

bash scripts/test_LOGO_10khigh.sh

Test on LOGO-L

bash scripts/test_LOGO_10kmid.sh

Test on LOGO-Gray

bash scripts/test_LOGO_10kgray.sh

Acknowledgement

This code is mainly based on the previous work SLBR.