Home

Awesome

Urbansprawl

The urbansprawl project provides an open source framework for assessing urban sprawl using open data. It uses OpenStreetMap (OSM) data to calculate its sprawling indices, divided in Accessibility, Land use mix, and Dispersion.

Locations of residential and activity (e.g. shop, commerce, office, among others) units are used to measure mixed use development and built-up dispersion, whereas the street network is used to measure the accessibility between different land uses. The output consists of spatial indices, which can be easily integrated with GIS platforms.

Additionally, a method to perform dissagregated population estimates at building level is provided. Our goal is to estimate the number of people living at the fine level of individual households by using open urban data (OpenStreetMap) and coarse-scaled population data (census tract).

Motivation:

Urban sprawl has been related to numerous negative environmental and socioeconomic impacts. Meanwhile, the number of people living in cities has been increasing considerably since 1950, from 746 million to 3.9 billion in 2014. More than 66% of the world's population are projected to live in urban areas by 2050, against 30% in 1950 (United Nations, 2014). The fact that urban areas have been growing at increasing rates urges for assessing urban sprawl towards sustainable development. However, sprawl is an elusive term and different approaches to measure it have lead to heterogeneous results.

Moreover, most studies rely on private/commercial data-sets and their software is rarely made public, impeding research reproducibility and comparability. Furthermore, many works give as result a unique value for a region of analysis, dismissing spatial information which is vital for urban planners and policy makers.

This situation brings new challenges on how to conceive cities that host such amounts of population in a sustainable way. Thus, this sustainability question should address several aspects, ranging from economical to social and environmental matters among others. Urbansprawl provides an open framework to aid in the process of calculating sprawling indices.

Framework characteristics:

Disclaimer: This package is no longer maintained.

For more details, refer to:

Installation

The urbansprawl framework works with Python 2+3.

osmnx scikit-learn psutil tensorflow keras jupyter

Using pip

sudo apt-get install libspatialindex-dev
pip install osmnx scikit-learn psutil tensorflow keras jupyter

Using Miniconda

conda create --name urbansprawl-env
source activate urbansprawl-env
conda install -c conda-forge libspatialindex osmnx scikit-learn psutil tensorflow keras jupyter

Using Anaconda

conda create --name urbansprawl-env
source activate urbansprawl-env
conda update -c conda-forge --all
conda install -c conda-forge osmnx scikit-learn psutil tensorflow keras jupyter

Usage

The framework is presented through different examples in the form of notebooks. As well, the computational running times involved in each procedure are shown for each example. To this end, a r5.large AWS EC2 instance was employed (2 vCPU and 16GiB memory) to run the notebooks.

Please note that the different procedures can be both memory and time consuming, according to the size of the chosen region of interest. In order to run the different notebooks, type in a terminal:

jupyter notebook

Example: Urban sprawl

OpenStreetMap data is retrieved using the Overpass API. An input region of interest can be extracted by:

Additionally, the state of the data-base can be retrieved for a specific data. This allows for comparisons across time and keeping track of a city's evolution.

Results are depicted for the city of Lyon, France:

Buildings

POI

Densit

Activ

SN

Sprawling indices:

LUM

Acc

Disp

Example: Population densities

Gridded population data is used in the context of population densities downscaling:

Population count images are depicted for the city of Grenoble, France:

INSEE

GPW