Awesome
TRTForYolov3
Desc
tensorRT for Yolov3
Test Enviroments
Ubuntu 16.04
TensorRT 5.0.2.6/4.0.1.6
CUDA 9.2
Models
Download the caffe model converted by official model:
If run model trained by yourself, comment the "upsample_param" blocks, and modify the prototxt the last layer as:
layer {
#the bottoms are the yolo input layers
bottom: "layer82-conv"
bottom: "layer94-conv"
bottom: "layer106-conv"
top: "yolo-det"
name: "yolo-det"
type: "Yolo"
}
It also needs to change the yolo configs in "YoloConfigs.h" if different kernels.
Run Sample
#build source code
git submodule update --init --recursive
mkdir build
cd build && cmake .. && make && make install
cd ..
#for yolov3-608
./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80
#for fp16
./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80 --mode=fp16
#for int8 with calibration datasets
./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80 --mode=int8 --calib=./calib_sample.txt
#for yolov3-416 (need to modify include/YoloConfigs for YoloKernel)
./install/runYolov3 --caffemodel=./yolov3_416.caffemodel --prototxt=./yolov3_416.prototxt --input=./test.jpg --W=416 --H=416 --class=80
Performance
Model | GPU | Mode | Inference Time |
---|---|---|---|
Yolov3-416 | GTX 1060 | Caffe | 54.593ms |
Yolov3-416 | GTX 1060 | float32 | 23.817ms |
Yolov3-416 | GTX 1060 | int8 | 11.921ms |
Yolov3-608 | GTX 1060 | Caffe | 88.489ms |
Yolov3-608 | GTX 1060 | float32 | 43.965ms |
Yolov3-608 | GTX 1060 | int8 | 21.638ms |
Yolov3-608 | GTX 1080 Ti | float32 | 19.353ms |
Yolov3-608 | GTX 1080 Ti | int8 | 9.727ms |
Yolov3-416 | GTX 1080 Ti | float32 | 9.677ms |
Yolov3-416 | GTX 1080 Ti | int8 | 6.129ms |
Eval Result
run above models with appending --evallist=labels.txt
int8 calibration data made from 200 pics selected in val2014 (see scripts dir)
Model | GPU | Mode | dataset | MAP(0.50) | MAP(0.75) |
---|---|---|---|---|---|
Yolov3-416 | GTX 1060 | Caffe(fp32) | COCO val2014 | 50.33 | 33.00 |
Yolov3-416 | GTX 1060 | float32 | COCO val2014 | 50.27 | 32.98 |
Yolov3-416 | GTX 1060 | int8 | COCO val2014 | 44.15 | 30.24 |
Yolov3-608 | GTX 1060 | Caffe(fp32) | COCO val2014 | 52.89 | 35.31 |
Yolov3-608 | GTX 1060 | float32 | COCO val2014 | 52.84 | 35.26 |
Yolov3-608 | GTX 1060 | int8 | COCO val2014 | 48.55 | 35.53 |
Notice:
- caffe implementation is little different in yolo layer and nms, and it should be the similar result compared to tensorRT fp32.
Details About Wrapper
see link TensorRTWrapper