Home

Awesome

ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks

Pipeine for Image Super-Resolution task that based on a frequently cited paper, ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks (Wang Xintao et al.), published in 2018.

In few words, image super-resolution (SR) techniques reconstruct a higher-resolution (HR) image or sequence from the observed lower-resolution (LR) images, e.g. upscaling of 720p image into 1080p.

One of the common approaches to solving this task is to use deep convolutional neural networks capable of recovering HR images from LR ones. And ESRGAN (Enhanced SRGAN) is one of them. Key points of ESRGAN:

ESRGAN architecture

Technologies

Quick Start

Setup environment

pip install git+https://github.com/leverxgroup/esrgan.git

Run an experiment

catalyst-dl run -C esrgan/config.yml --benchmark

where esrgan/config.yml is a path to the config file.

Results

Some examples of work of ESRGAN model trained on DIV2K dataset:

LR</br>(low resolution)ESRGAN</br>(original)ESRGAN</br>(ours)HR</br>(high resolution)
<img src="docs/_static/0853lr.png" height="128" width="128"/><img src="docs/_static/0853sr.png" height="128" width="128"/><img src="docs/_static/0853.png" height="128" width="128"/><img src="docs/_static/0853hr.png" height="128" width="128"/>
<img src="docs/_static/0857lr.png" height="128" width="128"/><img src="docs/_static/0857sr.png" height="128" width="128"/><img src="docs/_static/0857.png" height="128" width="128"/><img src="docs/_static/0857hr.png" height="128" width="128"/>
<img src="docs/_static/0887lr.png" height="128" width="128"/><img src="docs/_static/0887sr.png" height="128" width="128"/><img src="docs/_static/0887.png" height="128" width="128"/><img src="docs/_static/0887hr.png" height="128" width="128"/>

Documentation

Full documentation for the project is available at https://esrgan.readthedocs.io/

License

esrgan is released under a CC BY-NC-ND 4.0 license. See LICENSE for additional details about it.