Awesome
MEDIMP: 3D Medical Images with clinical Prompts from limited tabular data for renal transplantation
Source code for "MEDIMP: 3D Medical Images with clinical Prompts from limited tabular data for renal transplantation", MIDL 2023, https://openreview.net/forum?id=jt-ochRhqG.
<p align="center"> <img src="figures/overview_final.jpg" width="900"> </p>Usage
Pretrain your Image Encoder model locally using the dummy dataset jointly with Bio+Clinical BERT Text Encoder on your generated text annotations in data/dummy_dataframes/gpt_augs.txt
.
Modify config_dataset/make_dataset_setting_file.py
to make a dataset file containing the file_path_to_image, text annotations pairs.
python main_train.py --exams D15 D30 M3 M12 --architecture RN50 --context_length 77 --pretrained_biobert 1 --pretrained_dir RN50.pt --img_size 96 144 192 --batch_size 22 --eval_every 1 --learning_rate 1e-4 --num_epochs 200 --warmup_epochs 40 --freeze_nlp first11 --use_amp 1 --num_workers 2 --gradient_accumulation_steps 1 --description dummy_MEDIMP --wandb_id dummy_test
Pretrain your Image Encoder model sending a slurm job.
Edit the file to modify the slurm parameters and/or the main_train.py
arguments.
python slurm_train_features.py
Dummy dataset
As the dataset for this work is not publicly available, I built a dummy mri dataset path tree similar to our dataset so that the code can be ran on it, when argument dummy=True
in get_patient_seq_paths
function.
├── data
│ ├── dummy_dataframes
│ │ ├── df_clinicobiological_data.csv
│ │ ├── gtp_augs.txt
│ ├── dummy_mri_dataset (contains patients)
│ │ ├── dummy_mri.nii.gz
│ │ ├── 001-0001-A-A (contains exams)
│ │ │ ├── D15 (contains MRI sequences)
│ │ │ │ ├── 1_WATER_AX_LAVA-Flex_ss_IV
│ │ │ │ ├── 2_WATER_AX_LAVA-Flex_ART
│ │ │ │ ├── 3_WATER_AX_LAVA-Flex_tub
│ │ │ ├── D30
│ │ │ ├── M3
│ │ │ ├── M12
│ │ ├── 001-0002-B-B
│ │ ├── ...
└── ...
Requirements
See conda_environment.yml file or replicate the conda env:
conda env create -n ENVNAME --file conda_environment.yml
References
@misc{milecki2023medimp,
title={MEDIMP: 3D Medical Images with clinical Prompts from limited tabular data for renal transplantation},
author={Leo Milecki and Vicky Kalogeiton and Sylvain Bodard and Dany Anglicheau and Jean-Michel Correas and Marc-Olivier Timsit and Maria Vakalopoulou},
year={2023},
eprint={2303.12445},
archivePrefix={arXiv},
primaryClass={cs.CV}
}