Home

Awesome

VTP: Deep Learning for Vehicle Trajectory Prediction

Attention-LSTM: An LSTM model in a Mixed Traffic Flow Environment (Connected and Autonomous Vehicle, Human-driven Vehicle)

Performance of Attention-LSTM under different CAV Market Penetration Ratios

<p align="center"> <img src="Attention-LSTM/images/RMSE_model_comparison.png" width="500" height="400" /> </p>

STA-LSTM: An LSTM model with spatial-temporal attention mechanisms

<p align="center"> <img src="STA-LSTM/images/sta-lstm.png" width="750" height="400" /> </p>

STA-LSTM achieves comparable prediction performance against other state-of-the-art models

<table> <tr> <td rowspan=2><b>Models</b> <td colspan=5><b>RMSE per prediction time step</b> <tr> <td colspan=1><b>1st</b> <td colspan=1><b>2nd</b> <td colspan=1><b>3rd</b> <td colspan=1><b>4th</b> <td colspan=1><b>5th</b> <tr> <td colspan=1>physics-based model <td colspan=1>0.1776 <td colspan=1>0.3852 <td colspan=1>0.6033 <td colspan=1>0.8377 <td colspan=1>1.0888 <tr> <td colspan=1>naive LSTM <td colspan=1>0.1012 <td colspan=1>0.2093 <td colspan=1>0.3384 <td colspan=1>0.4830 <td colspan=1>0.6406 <tr> <td colspan=1>SA-LSTM <td colspan=1>0.1026 <td colspan=1>0.2031 <td colspan=1>0.3157 <td colspan=1>0.4367 <td colspan=1>0.5643 <tr> <td colspan=1>CS-LSTM [1] <td colspan=1>0.1029 <td colspan=1>0.2023 <td colspan=1>0.3146 <td colspan=1>0.4364 <td colspan=1>0.5674 <tr> <td colspan=1>STA-LSTM <td colspan=1>0.0995 <td colspan=1>0.2002 <td colspan=1>0.3130 <td colspan=1>0.4348 <td colspan=1>0.5615 </table>

[1] Nachiket Deo and Mohan M. Trivedi,"Convolutional Social Pooling for Vehicle Trajectory Prediction." CVPRW, 2018

Average temporal-level attention weights of the past six time steps

<p align="center"> <img src="STA-LSTM/images/temporal-weights.png" width="300" height="300" /> </p>

Spatial-level attention weight analysis

<p align="center"> <img src="STA-LSTM/images/spatial-class.png" width="600" height="300" /> </p> <p align="center"> <img src="STA-LSTM/images/density.png" width="700" height="300" /> </p> <p align="center"> <img src="STA-LSTM/images/101-attention.png" width="700" height="300" /> </p> <p align="center"> <img src="STA-LSTM/images/lane-changing.png" width="400" height="500" /> </p>

Questions or Issues

If you encounter any questions or issues, please feel free to open an issue or reach out directly via email at craskoti@vols[dot]utk[dot]edu.

Citation

You are more than welcome to cite our papers:

@Article{Lin2022Attention,
  author = {Lei Lin and Weizi Li and Huikun Bi and Lingqiao Qin},
  title = {Vehicle Trajectory Prediction Using {LSTM}s with Spatial-Temporal Attention Mechanisms},
  journal = {IEEE Intelligent Transportation Systems Magazine},
  year = {2022},
  volume = {14},
  number = {2},
  pages = {197–-208},
  doi = {10.1109/MITS.2021.3049404}
}

@Article{Lin2021Long,
  author={Lei Lin and Siyuan Gong and Srinivas Peeta and Xia Wu},
  title={Long Short-Term Memory-Based Human-Driven Vehicle Longitudinal Trajectory Prediction in a Connected and Autonomous Vehicle Environment},
  journal={Transportation Research Record},
  pages={0361198121993471},
  year={2021},
  publisher={SAGE Publications Sage CA: Los Angeles, CA}
}