Awesome
Attention-based Multi-input Neural network
<img src="https://i.ibb.co/jg5kzd5/egfr-architecture-new.jpg" width="700">How to install
Using conda
:
conda env create -n egfr -f environment.yml
conda activate egfr
Usage
The working folder is egfr-att/egfr
for the below instruction.
To train with Train/Test scheme, use:
python single_run.py --mode train
The original data will be splitted into training/test parts with ratio 8:2. When training completed, to evaluate on test data, use:
python single_run.py --mode test --model_path <MODEL-IN-TRAINED_MODELS-FOLDER>
# For example:
python single_run.py --mode test --model_path data/trained_models/model_TEST_BEST
ROC curve plot for test data will be placed in egfr/vis folder.
To train with 5-fold cross validation scheme, use:
python cross_val.py --mode train
When training completed, to evaluate on test data, use:
python cross_val.py --mode test --model_path <MODEL-IN-TRAINED_MODELS-FOLDER>
# For example:
python cross_val.py --mode test --model_path data/trained_models/model_TEST_BEST
ROC curve plot for test data will be placed in egfr/vis/
folder.
Attention weight visualization
To visualized attention weight of the model, use:
python weight_vis.py --dataset <PATH-TO-DATASET> --modelpath <PATH-TO-MODEL>
# For example:
python weight_vis.py --dataset data/egfr_10_full_ft_pd_lines.json --modelpath data/trained_models/model_TEST_BEST
By default, all data will be used to to extract attention weights. However, only samples with prediction output over a threshold (0.2) are chosen.
Citation
Please cite our study:
Pham, H.N., & Le, T.H. (2019). Attention-based Multi-Input Deep Learning Architecture for Biological Activity Prediction: An Application in EGFR Inhibitors. ArXiv, abs/1906.05168.
Bibtex:
@article{Pham2019AttentionbasedMD,
title={Attention-based Multi-Input Deep Learning Architecture for Biological Activity Prediction: An Application in EGFR Inhibitors},
author={Huy Ngoc Pham and Trung Hoang Le},
journal={2019 11th International Conference on Knowledge and Systems Engineering (KSE)},
year={2019},
pages={1-9}
}