Awesome
Numerical-Linear-Algebra
Numerical Linear Algebra, Trefethen and Bau, 1997. <br> My solutions to exercises in Numerical Linear Algebra by Trefethen and Bau. <br> There may be errors or wrong solutions, so use it only for reference. <br>
<p align = "center"> <img src = "https://user-images.githubusercontent.com/88715406/156889604-92cec130-85dd-4b65-a004-f11b0b15c46f.png" width = "20%" height = "20%"> </p>Contents
I. Fundamentals
- Lecture 1. Matrix-Vector Multiplication
- Lecture 2. Orthogonal Vectors and Matrices
- Lecture 3. Norms
- Lecture 4. The Singular Value Decomposition
- Lecture 5. More on the SVD
II. QR Factorization and Least Squares
- Lecture 6. Projectors
- Lecture 7. QR Factorization
- Lecture 8. Gram-Schmidt Orthogonalization
- Lecture 9. MATLAB
- Lecture 10. Householder Triangularization
- Lecture 11. Least Squares Problems
III. Conditioning and Stability
- Lecture 12. Conditioning and Condition Numbers
- Lecture 13. Floating Point Arithmetic
- Lecture 14. Stability
- Lecture 15. More on Stability
- Lecture 16. Stability of Householder Triangularization
- Lecture 17. Stability of Back Substitution
- Lecture 18. Conditioning of Least Squares Problems
- Lecture 19. Stability of Least Squares Algorithms
IV. Systems of Equations
- Lecture 20. Gaussian Elimination
- Lecture 21. Pivoting
- Lecture 22. Stability of Gaussian Elimination
- Lecture 23. Cholesky Factorization
V. Eigenvalues
- Lecture 24. Eigenvalue Problems
- Lecture 25. Overview of Eigenvalue Algorithms
- Lecture 26. Reduction to Hessenberg or Tridiagonal Form
- Lecture 27. Rayleigh Quotient, Inverse Iteration
- Lecture 28. QR Algorithm without Shifts
- Lecture 29. QR Algorithm with Shifts
- Lecture 30. Other Eigenvalue Algorithms
- Lecture 31. Computing the SVD
VI. Iterative Methods
- Lecture 32. Overview of Iterative Methods
- Lecture 33. The Arnoldi Iteration
- Lecture 34. How Arnoldi Locates Eigenvalues
- Lecture 35. GMRES
- Lecture 36. The Lanczos Iteration
- Lecture 37. From Lanczos to Gauss Quadrature Skip
- Lecture 38. Conjugate Gradients
- Lecture 39. Biorthogonalization Methods Skip
- Lecture 40. Preconditioning