Home

Awesome

E-commercial-dataset

Dataset of electronic commercial image used for saliency.

The dataset can be downloaded in https://www.dropbox.com/s/xsui782oy3kvjsm/E-commercial%20dataset.zip?dl=0.

IMAGE

Original images are saved in this path as *.jpg

FIXATION

Fixation maps are saved as *_fixPts.jpg, while saliency maps are saved as *_.fixMap.jpg.

TEXT REGION

The text detection results are stored in csv file, with the affinity score and region score.

SSwin-transformer Model added in Repo

To-do list

  1. -[x] Adding environment setting (you can use environment same as swin-transformer as temporary alternatives)
  2. -[ ] Refine the code into efficient way

Environment preparing

git clone https://github.com/leafy-lee/E-commercial-dataset.git
cd e-commercial
conda create -n ecom python=3.7 -y
conda activate ecom
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch
pip install timm==0.4.12
pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8 pyyaml scipy

Evaluation

To train the model, run:

python train.py --batch-size 8 --cfg configs/sswin.yaml --data-path DATA/ECdata/ --dataset ecdata --head headname

Evaluation

To evaluate a trained model, run:

python main.py --eval --cfg config --resume True --finetune ckpt --data-path data_dir

Citation

If you use this code, please cite

@InProceedings{Jiang_2022_CVPR,
    author    = {Jiang, Lai and Li, Yifei and Li, Shengxi and Xu, Mai and Lei, Se and Guo, Yichen and Huang, Bo},
    title     = {Does Text Attract Attention on E-Commerce Images: A Novel Saliency Prediction Dataset and Method},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2022},
    pages     = {2088-2097}
}