Awesome
CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch
The code is based on the https://github.com/filipradenovic/cnnimageretrieval-pytorch .
We added our attacking method ODFA (https://arxiv.org/abs/1809.02681). The performance drops from 88.2% to 2.24% on Oxford.
The results attacking other datasets can be found at our main repo https://github.com/layumi/U_turn.
Regular Testing
We provide the pretrained networks trained using the same parameters as in our TPAMI 2018 paper, with precomputed whitening. To evaluate them run:
python3 -m cirtorch.examples.test --gpu-id '2' --network-path 'retrievalSfM120k-resnet101-gem' --datasets 'oxford5k,paris6k,roxford5k,rparis6k' --whitening 'retrieval-SfM-120k' --multiscale '[1]'
The table below shows the performance comparison of networks trained with this framework and the networks used in the paper which were trained with our CNN Image Retrieval in MatConvNet:
Model | Oxford | Paris | ROxf (M) | RPar (M) | ROxf (H) | RPar (H) |
---|---|---|---|---|---|---|
ResNet101-GeM (PyTorch) Multiple Scale | 88.2 | 92.5 | 65.4 | 76.7 | 40.1 | 55.2 |
ResNet101-GeM (PyTorch) Single Scale | 86.24 | 90.66 | - | - | - | - |
VGG16-GeM (PyTorch) Single Scale | 85.24 | 86.28 | - | - | - | - |
Testing Adversarial Query
We add one function cirtorch.network.extract_vectors_aq
and one py file test_aq.py
.
single-scale
python3 -m cirtorch.examples.test_aq --gpu-id '2' --network-path 'retrievalSfM120k-resnet101-gem' --datasets 'oxford5k,paris6k' --whitening 'retrieval-SfM-120k' --multiscale '[1]'
multi-scale
python3 -m cirtorch.examples.test_aq --gpu-id '2' --network-path 'retrievalSfM120k-resnet101-gem' --datasets 'oxford5k,paris6k' --whitening 'retrieval-SfM-120k' --multiscale '[1, 1/2**(1/2), 1/2]'
PIRE / TMA with Adam Optimizer 100 iteration
python3 -m cirtorch.examples.test_pire --gpu-id '2' --network-path 'retrievalSfM120k-resnet101-gem' --datasets 'oxford5k,paris6k' --whitening 'retrieval-SfM-120k' --multiscale '[1]' --iter 100
PIRE / TMA with Adam Optimizer 100 iteration (MS)
python3 -m cirtorch.examples.test_pire --gpu-id '0' --network-path 'retrievalSfM120k-resnet101-gem' --datasets 'oxford5k,paris6k' --whitening 'retrieval-SfM-120k' --multiscale '[1, 1/2**(1/2), 1/2]' --iter 100
You will obtain result around:
Model | Oxford | Paris | ROxf (M) | RPar (M) | ROxf (H) | RPar (H) |
---|---|---|---|---|---|---|
ResNet101-GeM (PyTorch) Multiple Scale | 2.24 (1.82) | 4.78 (3.64) | - | - | - | - |
ResNet101-GeM (PyTorch) Single Scale | 0.80 | 3.00 | - | - | - | - |
VGG16-GeM (PyTorch) Single Scale | 0.64 | 1.85 | - | - | - | - |
Related publications
Training (fine-tuning) convolutional neural networks
@article{RTC18,
title = {Fine-tuning {CNN} Image Retrieval with No Human Annotation},
author = {Radenovi{\'c}, F. and Tolias, G. and Chum, O.}
journal = {TPAMI},
year = {2018}
}
@inproceedings{RTC16,
title = {{CNN} Image Retrieval Learns from {BoW}: Unsupervised Fine-Tuning with Hard Examples},
author = {Radenovi{\'c}, F. and Tolias, G. and Chum, O.},
booktitle = {ECCV},
year = {2016}
}
Revisited benchmarks for Oxford and Paris ('roxford5k' and 'rparis6k')
@inproceedings{RITAC18,
author = {Radenovi{\'c}, F. and Iscen, A. and Tolias, G. and Avrithis, Y. and Chum, O.},
title = {Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking},
booktitle = {CVPR},
year = {2018}
}
Versions
master (development)
- Migrated code to PyTorch 1.0.0, removed Variable, added torch.no_grad for more speed and less memory at evaluation
- Added rigid grid regional pooling that can be combined with any global pooling method (R-MAC, R-SPoC, R-GeM)
- Added PowerLaw normalization layer
- Added multi-scale testing with any given set of scales, in example test script
- Fix related to precision errors of covariance matrix estimation during whitening learning
- Fixed minor bugs
v1.0 (09 Jul 2018)
- First public version
- Compatible with PyTorch 0.3.0