Awesome
CGM
This is the code of our IJCAI-21 paper: Long-term, Short-term and Sudden Event: Trading Volume Movement Prediction with Graph-based Multi-view Modeling. . The original news data is shared at https://pan.baidu.com/s/1zTHKy54DOu0p9_fa4s-JVg The extraction code is:elj8.
Structure of the source code
src_classification/regression
-graph
-correlation.py
-file.py
-file_overnight.py (processing data)
-utils.py
-models
-attention.py
-glstm.py
-cgm.py (our model)
-slstm.py
-transformer.py
-criterion.py
-Data.py
-dcca.py
-file.py
-lr_scheduler.py
-optims.py
-train.py (main process)
-utils.py
Shell scripts for training CGM
for volume movement classification task
CUDA_VISIBLE_DEVICES=0 python3 src_classification/train.py -config config_classification.yaml -verbose -log graph_dcca_classification
for volume movement regression task
CUDA_VISIBLE_DEVICES=0 python3 src_regression/train.py -config config_regression.yaml -verbose -log graph_dcca_regression
Citation
If you use the above code for your research, please cite our paper:
@inproceedings{zhao2021longterm,
title={Long-term, Short-term and Sudden Event: Trading Volume Movement Prediction with Graph-based Multi-view Modeling},
author={Liang Zhao, Wei Li, Ruihan Bao, Keiko Harimoto, Yunfang Wu and Xu Sun},
booktitle={Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, {IJCAI} 2021, Montreal, Canada, August 21-26, 2021},
year={2021}}