Home

Awesome

Durham GitHub license PyTorch arXiv Stars paper

<!-- [![arXiv](https://img.shields.io/badge/arXiv-2303.11203-b31b1b.svg)](https://arxiv.org/abs/2303.11203) --> <div align="center"> <img src="./doc/images/durham_logo.png" width="15%" /> &emsp;&emsp;&emsp;&emsp; <img src="./doc/images/eccv-logo.svg" width="13%" /> <br> </div>

🔥 RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D LiDAR Segmentation [ECCV 2024 Oral]

Coming soon!

Updates

Citation

If you are making use of this work in any way, you must please reference the following paper in any report, publication, presentation, software release or any other associated materials:

RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D LiDAR Segmentation (Li Li, Hubert P. H. Shum and Toby P. Breckon), In Proc. Eur. Conf. Comput. Vis. (ECCV), 2024. [homepage] [pdf] [video] [poster]

@inproceedings{li2024rapidseg,
  title = {{{RAPiD-Seg}}: {{Range-Aware}} {{Pointwise Distance Distribution}} {{Networks}} for {{3D LiDAR Segmentation}}},
  author = {Li, Li and Shum, Hubert P. H. and Breckon, Toby P.},
  keywords = {point cloud, semantic segmentation, invariance feature, pointwise distance distribution, autonomous driving},
  year = {2024},
  month = jul,
  publisher = {{Springer}},
  booktitle = {European Conference on Computer Vision (ECCV)},
}