Awesome
Introduction
This is Stacked Cross Attention Network, source code of Stacked Cross Attention for Image-Text Matching (project page) from Microsoft AI and Research. The paper will appear in ECCV 2018. It is built on top of the VSE++ in PyTorch.
Requirements and Installation
We recommended the following dependencies.
import nltk
nltk.download()
> d punkt
Download data
Download the dataset files and pre-trained models. We use splits produced by Andrej Karpathy. The raw images can be downloaded from from their original sources here, here and here.
The precomputed image features of MS-COCO are from here. The precomputed image features of Flickr30K are extracted from the raw Flickr30K images using the bottom-up attention model from here. All the data needed for reproducing the experiments in the paper, including image features and vocabularies, can be downloaded from:
https://www.kaggle.com/datasets/kuanghueilee/scan-features
We refer to the path of extracted files for data.zip
as $DATA_PATH
and files for vocab.zip
to ./vocab
directory. Alternatively, you can also run vocab.py to produce vocabulary files. For example,
python vocab.py --data_path data --data_name f30k_precomp
python vocab.py --data_path data --data_name coco_precomp
Data pre-processing (Optional)
The image features of Flickr30K and MS-COCO are available in numpy array format, which can be used for training directly. However, if you wish to test on another dataset, you will need to start from scratch:
- Use the
bottom-up-attention/tools/generate_tsv.py
and the bottom-up attention model to extract features of image regions. The output file format will be a tsv, where the columns are ['image_id', 'image_w', 'image_h', 'num_boxes', 'boxes', 'features']. - Use
util/convert_data.py
to convert the above output to a numpy array.
If downloading the whole data package containing bottom-up image features for Flickr30K and MS-COCO is too slow for you, you can download everything but image features from https://www.kaggle.com/datasets/kuanghueilee/scan-features and compute image features locally from raw images.
Training new models
Run train.py
:
python train.py --data_path "$DATA_PATH" --data_name coco_precomp --vocab_path "$VOCAB_PATH" --logger_name runs/coco_scan/log --model_name runs/coco_scan/log --max_violation --bi_gru
Arguments used to train Flickr30K models:
Method | Arguments |
---|---|
SCAN t-i LSE | --max_violation --bi_gru --agg_func=LogSumExp --cross_attn=t2i --lambda_lse=6 --lambda_softmax=9 |
SCAN t-i AVG | --max_violation --bi_gru --agg_func=Mean --cross_attn=t2i --lambda_softmax=9 |
SCAN i-t LSE | --max_violation --bi_gru --agg_func=LogSumExp --cross_attn=i2t --lambda_lse=5 --lambda_softmax=4 |
SCAN i-t AVG | --max_violation --bi_gru --agg_func=Mean --cross_attn=i2t --lambda_softmax=4 |
Arguments used to train MS-COCO models:
Method | Arguments |
---|---|
SCAN t-i LSE | --max_violation --bi_gru --agg_func=LogSumExp --cross_attn=t2i --lambda_lse=6 --lambda_softmax=9 --num_epochs=20 --lr_update=10 --learning_rate=.0005 |
SCAN t-i AVG | --max_violation --bi_gru --agg_func=Mean --cross_attn=t2i --lambda_softmax=9 --num_epochs=20 --lr_update=10 --learning_rate=.0005 |
SCAN i-t LSE | --max_violation --bi_gru --agg_func=LogSumExp --cross_attn=i2t --lambda_lse=20 --lambda_softmax=4 --num_epochs=20 --lr_update=10 --learning_rate=.0005 |
SCAN i-t AVG | --max_violation --bi_gru --agg_func=Mean --cross_attn=i2t --lambda_softmax=4 --num_epochs=20 --lr_update=10 --learning_rate=.0005 |
Evaluate trained models
from vocab import Vocabulary
import evaluation
evaluation.evalrank("$RUN_PATH/coco_scan/model_best.pth.tar", data_path="$DATA_PATH", split="test")
To do cross-validation on MSCOCO, pass fold5=True
with a model trained using
--data_name coco_precomp
.
Reference
If you found this code useful, please cite the following paper:
@inproceedings{lee2018stacked,
title={Stacked cross attention for image-text matching},
author={Lee, Kuang-Huei and Chen, Xi and Hua, Gang and Hu, Houdong and He, Xiaodong},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={201--216},
year={2018}
}
License
Acknowledgments
The authors would like to thank Po-Sen Huang and Yokesh Kumar for helping the manuscript. We also thank Li Huang, Arun Sacheti, and Bing Multimedia team for supporting this work.