Awesome
This is an official implementation of CVPR23 paper 'Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly Detection' (https://arxiv.org/abs/2303.12369v1).
Environment Setup
To set up the environment, you can easily run the following command:
conda create -n UMIL python=3.7
conda activate UMIL
pip install -r requirements.txt
Install Apex as follows
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
Data Preparation
Download the videos and labels for UCF-crime or TAD dataset and extract frames from videos. The dataset directory should be origanized as follows:
UCF/
├─ frames/
├─ Abuse/
├─ Abuse001_x264.mp4/
├─ img_00000000.jpg
├─ Arrest/
...
TAD/
├─ frames/
├─ abnormal/
├─ 01_Accident_001.mp4/
...
├─ normal/
...
Pre-trained model weights
Please find the model weights in the following:
Train
The config files lie in configs
. For example, to train X-CLIP-B/32 with 5 frames on UCF on 2 GPUs, you can run
CUDA_VISIBLE_DEVICES=0,1 bash tools/dist_train_recognizer.sh 2
Note:
- The test during training is a fast test strategy, it does not represent the real AUC.
- Please specify the data path in config file(
configs/*.yaml
). Also, you can set them by attaching an argument--opts DATA.ROOT /PATH/TO/videos DATA.TRAIN_FILE /PATH/TO/train.txt DATA.VAL_FILE /PATH/TO/val.txt
. Note that if you use the tar file(videos.tar
), just set theDATA.ROOT
to/PATH/TO/videos.tar
. For standard folder, set that to/PATH/TO/videos
naturally. - The pretrained model will be automatically downloaded. Of course, you can specify it by using
--pretrained /PATH/TO/PRETRAINED
.
Test
For example, to test the X-CLIP-B/32 with 5 frames on UCF, you can run
CUDA_VISIBLE_DEVICES=1 bash tools/dist_test_recognizer.sh 1
If you find this work helpful, please cite:
@inproceedings{Lv2023unbiased,
title={Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly Detection},
author={Hui Lv and Zhongqi Yue and Qianru Sun and Bin Luo and Zhen Cui and Hanwang Zhang},
booktitle={CVPR},
year={2023}
}