Awesome
Aggregating Global Features into Local Vision Transformer(MOA-Transformer)
Requirements
python = 3.7 <br /> pytorch >= 0.4 <br /> Cuda = 10.2 <br /> timm = 0.3.2 <br /> apex <br />
Datapreperation
ImageNet
└───Train
└───Class1
│ image111.jpg
│ image112.jpg
│ ...
└───Class2
│ image113.jpg
│ image114.jpg
│ ...
└───....
└───Val
└───Class1
│ image115.jpg
│ image116.jpg
│ ...
└───Class2
│ image117.jpg
│ image118.jpg
│ ...
└───....
Usage
- Train :
python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 mainup.py \
--cfg configs/MOA_tiny_patch4_window14_224.yaml --data-path <imagenet-path> --batch-size 128
- Evaluate:
python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 mainup.py --eval \
--cfg configs/MOA_tiny_patch4_window14_224.yaml --resume <checkpoint> --data-path <imagenet-path>