Awesome
DomainAdaptor
The implementation of ICCV 2023 paper 《 DomainAdaptor: A Novel Approach to Test-time Adaptation 》
Install packages
conda install pytorch torchvision cudatoolkit
conda install matplotlib tqdm tensorboardX
Dataset structure
PACS
├── kfold
│ ├── art_painting
│ ├── cartoon
│ ├── photo
│ └── sketch
VLCS
├── CALTECH
│ ├── crossval
│ ├── full
│ ├── test
│ └── train
├── LABELME
│ ├── crossval
│ ├── full
| ...
OfficeHome
├── Art
│ ├── Alarm_Clock
│ ├── Backpack
│ ├── Batteries
│ ├── Bed
│ ├── Bike
│ ├── Bottle
| ...
The data root can be modified in main.py or pase the args --data-root your_data_root
.
Run the code
The code of DomainAdaptor is in models/DomainAdaptor.py.
The pretrained deepall models are available at Google Drive. Or you can train the deepall models by yourself with the following code:
bash script/deepall.sh
With the pretrained models, you can run the following code to evaluate with DomainAdaptor:
bash script/TTA.sh
Citation
@inproceedings{zhang2023domainadaptor,
title={DomainAdaptor: A Novel Approach to Test-time Adaptation},
author={Zhang, Jian and Qi, Lei and Shi, Yinghuan and Gao, Yang},
bootitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
year={2023}
}