Awesome
TALLFormer
This is the offical pyTorch implementation of our ECCV 2022 paper TALLFormer: Temporal Action Localization with Long-memory Transformer.
Temporal action localization takes hundreds of frames as input. End-to-end training on this task requires huge GPU memory (>32 GB). This issue becomes even worse with the recent video transformer models, many of which have quadratic memory complexity. To address these issues, we propose TALLFormer, a memory-efficient and end-to-end trainable Temporal Action Localization Transformer with Long-term memory. Our long-term memory mechanism eliminates the need for processing hundreds of redundant video frames during each training iteration, thus, significantly reducing the GPU memory consumption and training time. TALLFormer outperforms previous state-of-the-arts by a large margin, achieving an average mAP of 59.1% on THUMOS14 and 35.6% on ActivityNet-1.3.
Change logs
- 2023-01-03: release code for ActivityNet.See Section ANet below.
Installation
Our code is built on vedatad. Many Thanks!
Requirement
- Linux
- pytorch 1.10.1
- Python 3.8.5
- ffmpeg 4.3.11
Install vedatad
a. Create a conda virtual environment and activate it.
conda create -n vedatad python=3.8.5 -y
conda activate vedatad
b. Install PyTorch and torchvision following the official instructions, e.g.,
# CUDA 10.2
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 -c pytorch
# CUDA 11.3
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
c. Clone the vedatad repository.
git clone https://github.com/klauscc/TALLFormer
cd vedatad
vedatad_root=${PWD}
d. Install vedatad.
pip install -r requirements/build.txt
pip install -v -e .
Reproduce results on THUMOS14
Prepare Data
a. Download datasets & Create annotations
Under the root dir of our codebase, download and place data under directory data/thumos14
.
# you can also download it to othe place and use softlink to link it here.
mkdir -p data/thumos14
cd data/thumos14
# download
../../tools/data/thumos14/download.sh
# generate annotations.
cd ../..
python ./tools/data/thumos14/txt2json.py --anno_root data/thumos14/annotations --video_root data/thumos14/videos --mode val
python ./tools/data/thumos14/txt2json.py --anno_root data/thumos14/annotations --video_root data/thumos14/videos --mode test
b. Extract frames
Our model use FPS=15 and spatial resolution 256x256
.
./tools/data/extract_frames.sh data/thumos14/videos/val data/thumos14/frames_15fps_256x256/val -vf fps=15 -s 256x256 %05d.png
./tools/data/extract_frames.sh data/thumos14/videos/test data/thumos14/frames_15fps_256x256/test -vf fps=15 -s 256x256 %05d.png
Train
a. Download pretrained weights
Download weights and place into directory ./data/pretrained_weights/vswin
mkdir -p ./data/pretrained_models/vswin
# vswin-B
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window877_kinetics400_22k.pth -P ./data/pretrained_models/vswin
# vswin-T
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_tiny_patch244_window877_kinetics400_1k.pth -P ./data/pretrained_models/vswin
Convert the ckpt to the format that our code can accept.
# vswin-T
python ./tools/convert_vswin_ckpt.py --src ./data/pretrained_models/vswin/swin_tiny_patch244_window877_kinetics400_1k.pth
# vswin-B
python ./tools/convert_vswin_ckpt.py --src ./data/pretrained_models/vswin/swin_base_patch244_window877_kinetics400_22k.pth
b. Init the memory-bank
We first extract the features of the training set and save it to a file (memory-bank). During training, our model will load and update this memory-bank.
# config can be "swin_b_15fps_256x256", "swin_t_15fps_256x256", "swin_t_15fps_128x128"
python ./tools/data/extract_features.py --config swin_b_15fps_256x256
The files will be saved to directory data/thumos14/memory_mechanism/feat_swinb_15fps_256x256_crop224x224/
.
c. train and evaluation
# if you change the expid, *be sure* to change the `expid` variable in the config file as well.
expid=1.0.0-vswin_b_256x256-12GB
# first copy the memory bank to a tmp directory. Our model will modify it *inplace*.
# be sure the disk for the tmp directory is fast enough. SSD prefered.
mkdir -p data/tmp/eccv2022/thumos14/memory_mechanism/$expid
cp -r data/thumos14/memory_mechanism/feat_swinb_15fps_256x256_crop224x224 data/tmp/eccv2022/thumos14/memory_mechanism/$expid/
workdir=workdir/tallformer/$expid
mkdir -p $workdir
config=configs/trainval/thumos/$expid.py
# train with 4 GPUs.
tools/dist_trainval.sh $config "0,1,2,3" --workdir $workdir
# test
expid=1.0.0-vswin_b_256x256-12GB
workdir=workdir/tallformer/$expid
config=configs/trainval/thumos/$expid.py
for epoch in 600 700 800 900 1000; do
python tools/test.py $config $workdir/epoch_${epoch}_weights.pth \
--out $workdir/results_e$epoch-chunk.pkl
done
<a id="anet"></a>
Reproduce results on ActivityNet
1. preprocess dataset.
Convert videos to resolution 256x256 and 768 frames no matter how long each video is.
res=256x256
thread_num=8
python3 vedatad/tools/data/anet/transform_videos.py --output_dir data/anet/videos_$res \
--resolution $res $thread_num
2. download pretrained weights.
Download weights and place into directory ./data/pretrained_weights/vswin
mkdir -p ./data/pretrained_models/vswin
# vswin-B
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window877_kinetics600_22k.pth -P ./data/pretrained_models/vswin
# convert the ckpt to the format that our code can accept.
python ./tools/convert_vswin_ckpt.py --src ./data/pretrained_models/vswin/swin_base_patch244_window877_kinetics600_22k.pth
3. init memory bank.
python vedatad/tools/data/anet/extract_features.py \
--video_dir data/anet/videos_256x256 \
--output_dir data/anet/memory_mechanism/feat_swinb_k600_256x256_768frames \
--model swin_b \
--crop_size 224
4. train
export MASTER_ADDR=localhost
export MASTER_PORT=12443 # any unused port.
expid=1.0.0
# make sure the expid in the additional_config file matches the expid here.
additional_config=AFSD/anet_video_cls/configs/membank/$expid.py
config=AFSD/anet_video_cls/configs/anet_256_mp4.yaml
ckpt_path=workdir/tallformer/anet/${expid}
# copy memory bank to a temporary directory.
membank_dir=data/tmp/anet/memory_mechanism/${expid}
mkdir -p $membank_dir
cp -r data/anet/memory_mechanism/feat_swinb_k600_256x256_768frames $membank_dir
# do training
python3 AFSD/anet_video_cls/membank/train_membank.py $config --lw=1 --cw=1 --piou=0.6 --ssl 0. \
--checkpoint_path $ckpt_path --addi_config $additional_config \
--learning_rate 1e-4 \
--batch_size 1 \
--ngpu 4
5. evaluation
# testing
expid=1.0.0
ckpt_path=workdir/tallformer/anet/${expid}
config=AFSD/anet_video_cls/configs/anet_256_mp4.yaml
additional_config=AFSD/anet_video_cls/configs/membank/${expid}.py
epoch=10
# for epoch in `seq 10 -2 3`; do
echo "Testing Epoch: $epoch"
output_json=${expid}-epoch_${epoch}-anet_rgb.json
echo $output_json
python3 AFSD/anet_video_cls/test.py $config --nms_sigma=0.85 --ngpu=4 \
--checkpoint_path $ckpt_path/checkpoint-$epoch.ckpt \
--output_json=$output_json \
--addi_config $additional_config
for classifier in "builtin" "cuhk" "gt"; do
output_json=${expid}-epoch_${epoch}-anet_rgb-${classifier}.json
python3 AFSD/anet_video_cls/eval.py output/$output_json \
--workspace $ckpt_path --epoch ${epoch}_${classifier}
done
done
Credits
Our implementation is inspired by several open-sourced work, including:
Many Thanks!
Citation
If you find this project useful for your research, please use the following BibTeX entry.
@article{cheng2022tallformer,
title={TALLFormer: Temporal Action Localization with Long-memory Transformer},
author={Cheng, Feng and Bertasius, Gedas},
journal={arXiv preprint arXiv:2204.01680},
year={2022}
}