Home

Awesome

Chainer implementation of non-negative PU learning and unbiased PU learning

This is a reproducing code for non-negative PU learning [1] and unbiased PU learning [2] in the paper "Positive-Unlabeled Learning with Non-Negative Risk Estimator".

Requirements

Quick start

You can run an example code of MNIST for comparing the performance of nnPU learning and uPU learning on GPU.

python3 train.py -g 0

There are also preset configurations for reproducing results on [1].

You can see additional information by adding --help.

Example result

After running training_mnist.py, 2 figures and 1 log file are made in result/ by default. The errors are measured by zero-one loss.

training error

test error

Reference

[1] Ryuichi Kiryo, Gang Niu, Marthinus Christoffel du Plessis, and Masashi Sugiyama. "Positive-Unlabeled Learning with Non-Negative Risk Estimator." Advances in neural information processing systems. 2017.

[2] Marthinus Christoffel du Plessis, Gang Niu, and Masashi Sugiyama. "Convex formulation for learning from positive and unlabeled data." Proceedings of The 32nd International Conference on Machine Learning. 2015.

[3] LeCun, Yann. "The MNIST database of handwritten digits." http://yann.lecun.com/exdb/mnist/ (1998).

[4] Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images." (2009).