Home

Awesome

Employee Future Prediction

Motivation

In a data science team, it is common to continuously try to find a better model than the existing one in production. It is important to make sure the service doesn't break when the new model is deployed.

This project demonstrates how to use DagsHub and GitHub Actions to:

Here is the summary of the workflow:

Experiment on DagsHub

After experimenting with different parameters using MLFlow and DagsHub, we choose a combinations of parameters that gives a better performance than the existing model in production and commit the code to Git.

Use GitHub Actions to Test Model

The first workflow named test_model.yaml automatically tests a new pull request, which can only be merged if all tests are passed.

Use GitHub Actions to Deploy Model After Merging

The second workflow named deploy_app.yaml automatically deploy the new model to the existing service after the pull request is merged.

.