Awesome
konfig
konfig enables serverless workloads running on GCP to reference Kubernetes configmaps and secrets stored in GKE clusters at runtime. konfig currently supports Cloud Run and Cloud Functions workloads.
Usage
konfig is enabled via a single import statement:
import (
...
_ "github.com/kelseyhightower/konfig"
)
How Does it Work
The side effect of importing the konfig
library will cause konfig to:
- call the Cloud Run or Cloud Functions API to get a list of env vars to process. We avoid scanning the running environment as any library can set env vars before konfig runs.
- retrieve the GKE endpoint based on the secret or configmap reference
- retrieve configmap and secret keys from the GKE cluster using the service account provided to the Cloud Run or Cloud Function instance.
- substitute the reference string with the value of the configmap or secret key.
References to Kubernetes configmaps and secrets can be made when defining Cloud Run and Cloud Functions environment variables using the reference syntax.
Tutorials
A GKE cluster is used to store configmaps and secrets referenced by Cloud Run and Cloud Function workloads. Ideally an existing cluster can be used. For the purpose of this tutorial create the smallest GKE cluster possible in the us-central1-a
zone:
gcloud container clusters create k0 \
--cluster-version latest \
--no-enable-basic-auth \
--no-enable-ip-alias \
--metadata disable-legacy-endpoints=true \
--no-issue-client-certificate \
--num-nodes 1 \
--machine-type g1-small \
--scopes gke-default \
--zone us-central1-a
Download the credentials for the k0
cluster:
gcloud container clusters get-credentials k0 \
--zone us-central1-a
We only need the Kubernetes API server as we only plan to use Kubernetes as an secrets and config store, so delete the default node pool.
gcloud container node-pools delete default-pool \
--cluster k0 \
--zone us-central1-a
With the k0
GKE cluster in place it's time to create the secrets that will be referenced later in the tutorial.
cat > config.json <<EOF
{
"database": {
"username": "user",
"password": "123456789"
}
}
EOF
Create the env
secret with two keys foo
and config.json
which holds the contents of the configuration file created in the previous step:
kubectl create secret generic env \
--from-literal foo=bar \
--from-file config.json
Create the env
configmap with a single key environment
:
kubectl create configmap env \
--from-literal environment=production
At this point the env
secret and configmap can be referenced from either Cloud Run or Cloud Functions using the konfig
library.
Cloud Run Tutorial
In this section Cloud Run will be used to deploy the gcr.io/hightowerlabs/env:0.0.1
container image which responds to HTTP requests with the contents of the ENVIRONMENT
, FOO
and CONFIG_FILE
environment variables, which reference the env
secret and configmap created in the previous section.
A GKE cluster ID is required when referencing configmaps and secrets. Extract the cluster ID for the k0
GKE cluster:
CLUSTER_ID=$(gcloud container clusters describe k0 \
--zone us-central1-a \
--format='value(selfLink)')
Strip the https://container.googleapis.com/v1
from the previous response and store the results:
CLUSTER_ID=${CLUSTER_ID#"https://container.googleapis.com/v1"}
The CLUSTER_ID env var should hold the fully qualified path to the k0 cluster. Assuming
hightowerlabs
as the project ID the value would be/projects/hightowerlabs/zones/us-central1-a/clusters/k0
.
Create the env
Cloud Run service and set the ENVIRONMENT
, FOO
and CONFIG_FILE
env vars to reference the env
configmaps and secrets in the k0
GKE cluster:
gcloud alpha run deploy env \
--allow-unauthenticated \
--concurrency 50 \
--image gcr.io/hightowerlabs/env:0.0.1 \
--memory 2G \
--region us-central1 \
--set-env-vars "FOO=\$SecretKeyRef:${CLUSTER_ID}/namespaces/default/secrets/env/keys/foo,CONFIG_FILE=\$SecretKeyRef:${CLUSTER_ID}/namespaces/default/secrets/env/keys/config.json?tempFile=true,ENVIRONMENT=\$ConfigMapKeyRef:${CLUSTER_ID}/namespaces/default/configmaps/env/keys/environment"
The
CONFIG_FILE
env var reference uses thetempFile
option to write the contents of theconfig.json
secret key to a temp file. TheCONFIG_FILE
env var will hold the path to the temp file which can be read during normal program execution.
Retrieve the env
service HTTP endpoint:
ENV_SERVICE_URL=$(gcloud alpha run services describe env \
--namespace hightowerlabs \
--region us-central1 \
--format='value(status.url)')
Make an HTTP request to the env
service:
curl $ENV_SERVICE_URL
Output:
CONFIG_FILE: /tmp/363780357
ENVIRONMENT: production
FOO: bar
# /tmp/363780357
{
"database": {
"username": "user",
"password": "123456789"
}
}
Cloud Functions Tutorial
konfig pulls referenced secrets and configmaps from GKE clusters using the GCP service account assigned to a Cloud Function. Create the konfig
service account with the following IAM roles:
- roles/iam.serviceAccountTokenCreator
- roles/cloudfunctions.viewer
- roles/container.viewer
PROJECT_ID=$(gcloud config get-value core/project)
SERVICE_ACCOUNT_NAME="konfig"
gcloud iam service-accounts create ${SERVICE_ACCOUNT_NAME} \
--quiet \
--display-name "konfig service account"
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
--quiet \
--member="serviceAccount:${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
--role='roles/iam.serviceAccountTokenCreator'
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
--quiet \
--member="serviceAccount:${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
--role='roles/cloudfunctions.viewer'
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
--quiet \
--member="serviceAccount:${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
--role='roles/container.developer'
Enable the konfig
GCP service account to access the env
secret and configmap created in previous section:
SERVICE_ACCOUNT_EMAIL="konfig@${PROJECT_ID}.iam.gserviceaccount.com"
Create the konfig
role in the k0
GKE cluster:
kubectl create role konfig \
--verb get \
--resource secrets \
--resource configmaps \
--resource-name env
Bind the konfig
GCP service account and konfig
role:
kubectl create rolebinding konfig \
--role konfig \
--user ${SERVICE_ACCOUNT_EMAIL}
At this point the konfig
GCP service account has access to the configmap and secret named env
in the default namespace in the k0
GKE cluster.
The
konfig
Kubernetes role limits thekonfig
GCP service to the definedenv
secret and configmap in a single namespace. Access to additional secrets and configmaps will require additional permissions.
Deploy the env
function.
cd examples/cloudfunctions/env/
gcloud alpha functions deploy env \
--entry-point F \
--max-instances 10 \
--memory 128MB \
--region us-central1 \
--runtime go111 \
--service-account $SERVICE_ACCOUNT_EMAIL \
--set-env-vars "FOO=\$SecretKeyRef:${CLUSTER_ID}/namespaces/default/secrets/env/keys/foo,CONFIG_FILE=\$SecretKeyRef:${CLUSTER_ID}/namespaces/default/secrets/env/keys/config.json?tempFile=true,ENVIRONMENT=\$ConfigMapKeyRef:${CLUSTER_ID}/namespaces/default/configmaps/env/keys/environment" \
--timeout 30s \
--trigger-http
Enable unauthenticated access to the env
function HTTP endpoint:
gcloud alpha functions add-iam-policy-binding env \
--member allUsers \
--role roles/cloudfunctions.invoker
Retrieve the HTTPS trigger URL:
HTTPS_TRIGGER_URL=$(gcloud beta functions describe env \
--format 'value(httpsTrigger.url)')
Make an HTTP request to the env
function:
curl $HTTPS_TRIGGER_URL
CONFIG_FILE: /tmp/813067742
ENVIRONMENT: production
FOO: bar
# /tmp/813067742
{
"database": {
"username": "user",
"password": "123456789"
}
}