Awesome
BERT NER
:bangbang: Model without Extra X
label checkout branch experiment
Use google BERT to do CoNLL-2003 NER !
Requirements
python3
pip3 install -r requirements.txt
Run
python run_ner.py --data_dir=data/ --bert_model=bert-base-cased --task_name=ner --output_dir=out --max_seq_length=128 --do_train --num_train_epochs 5 --do_eval --warmup_proportion=0.4
Result
Validation Data
precision recall f1-score support
MISC 0.9407 0.9304 0.9355 273
LOC 0.9650 0.9881 0.9764 419
PER 0.9844 0.9783 0.9813 322
ORG 0.9794 0.9852 0.9822 337
avg / total 0.9683 0.9734 0.9708 1351
Test Data
precision recall f1-score support
ORG 0.9152 0.9073 0.9113 464
PER 0.9767 0.9692 0.9730 260
LOC 0.9397 0.9263 0.9330 353
MISC 0.8276 0.9014 0.8629 213
avg / total 0.9198 0.9240 0.9217 1290
Pretrained model download from here
Inference
from bert import Ner
model = Ner("out/")
output = model.predict("Steve went to Paris")
print(output)
# {
# "Steve": {
# "tag": "B-PER",
# "confidence": 0.999879002571106
# },
# "went": {
# "tag": "O",
# "confidence": 0.9968552589416504
# },
# "to": {
# "tag": "O",
# "confidence": 0.9996656179428101
# },
# "Paris": {
# "tag": "B-LOC",
# "confidence": 0.999504804611206
# }
# }