Awesome
SCNet Code
Region matching code is contributed by Kai Han (khan@cs.hku.hk).
Dense matching code is contributed by Rafael S. Rezende (rafael.sampaio_de_rezende@inria.fr).
This code is written in MATLAB, and implements the SCNet[1]. For the dataset, see our project page: http://www.di.ens.fr/willow/research/scnet.
Install Dependencies
- Install [MatConvNet] (http://www.vlfeat.org/matconvnet/).
- Download [VLFeat] (http://www.vlfeat.org/) [0.9.20] in './utils/'
- Download the following source codes of object proposal or other proposal methods you would like to test:
- [Randomized Prim’s] (https://github.com/smanenfr/rp#rp) (our preference);
- [EdgeBox] (https://github.com/pdollar/edges);
- [SelectiveSearch] (http://koen.me/research/selectivesearch/);
- [Multiscale Combinatorial Grouping] (https://github.com/jponttuset/mcg);
- Download a ImageNet [Caffe Reference model] (http://www.vlfeat.org/matconvnet/pretrained/) in
./data/models/
.
Codes
SCNet_Matconvnet
Additional Matconvnet modules implemented for SCNet. These code should be copied into matconvnet/matlab/
folder.
SCNet
This is the primary net work training and testing code.
-
SCNet_A_init.m
,SCNet_AG_init.m
,SCNet_AGplus_init.m
: initialize the SCNet_A, SCNet_AG, SCNet_AG+. -
SCNet_A.m
,SCNet_AG.m
,SCNet_AGplus.m
: train SCNet_A, SCNet_AG, SCNet_AG+. -
eva_PCR_mIoU_SCNet_A.m
,eva_PCR_mIoU_SCNet_AG.m
,eva_PCR_mIoU_SCNet_AGplus.m
: evaluate the trained nets. -
eva_PCR_mIoU_ImageNet_SCNet_A.m
,eva_PCR_mIoU_ImageNet_SCNet_AG.m
,eva_PCR_mIoU_ImageNet_SCNet_AGplus.m
: evaluate SCNets with ImageNet pretrained parameters, i.e., SCNets without training.
SCNet_Baselines
Comparison code for our SCNet features and HOG features with NAM, PHM and LOM in Proposal Flow [2, 3].
-
NAM_HOG_eva.m
,PHM_HOG_eva.m
,LOM_HOG_eva.m
: evaluate NAM, PHM, and LOM with HOG features. -
NAM_SCNet_eva.m
,PHM_SCNet_eva.m
,LOM_SCNet_eva.m
: evaluate NAM, PHM, and LOM with learned SCNet features. -
HOG_SCNet_AG_eva.m
: replace the learned SCNet feature by HOG feature in SCNet_AG model.
Data
We used PF-PASCAL, PF-WILLOW, PASCAL Parts and CUB data sets and follows Proposal Flow[2, 3] to generate our trainging data.
Triaining data preparation code is put in PF-PASCAL-code
folder.
Notes
- The code is provided for academic use only. Use of the code in any commercial or industrial related activities is prohibited.
- If you use our code or dataset, please cite the paper.
@InProceedings{han2017scnet,
author = {Kai Han and Rafael S. Rezende and Bumsub Ham and Kwan-Yee K. Wong and Minsu Cho and Cordelia Schmid and Jean Ponce},
title = {SCNet: Learning Semantic Correspondence},
booktitle = {International Conference on Computer Vision (ICCV)},
year = {2017}
}
References
[1] Kai Han, Rafael S. Rezende, Bumsub Ham, Kwan-Yee K. Wong, Minsu Cho, Cordelia Schmid, Jean Ponce, "SCNet: Learning Semantic Correspondence", International Conference on Computer Vision (ICCV), 2017.
[2] Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce, "Proposal Flow: Semantic Correspondences from Object Proposals", IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 2017
[3] Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce, "Proposal Flow", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016