Home

Awesome

Prompting Visual-Language Models for Efficient Video Understanding

Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, Weidi Xie.  ECCV 2022.

[project page] [Arxiv] [Video]

<center><img src="figure/teasers.png" width="100%"></center>

Get Started on HMDB51 (More datasets will be available soon)

Environment

Data Preparation

Training

cd ./src
python main.py -j 8 --prefix 16 --postfix 16 --tfm_layers 1 --tfm_heads 8 --dataset HMDB51-feature-30fps-center --temporal 1 --batchsize 64 --lr 1e-4 --featnorm 1 --verbose Temp --num_iterations 1100 --save_iterations 55

Evaluation

cd ./src
python main.py -j 8 --prefix 16 --postfix 16 --tfm_layers 1 --tfm_heads 8 --dataset HMDB51-feature-30fps-center --temporal 1 --batchsize 64 --lr 1e-4 --featnorm 1 --verbose Temp --test path_to_checkpoint

[Optional] Evaluating with Our Pre-trained Model

cd ./src
python main.py -j 8 --prefix 16 --postfix 16 --tfm_layers 1 --tfm_heads 8 --dataset HMDB51-feature-30fps-center --temporal 1 --batchsize 64 --lr 1e-4 --featnorm 1 --verbose Temp --test ../models/HMDB_best.pth.tar

Reference

@inproceedings{ju2022prompting,
  title={Prompting Visual-Language Models for Efficient Video Understanding}
  author={Chen Ju and Tengda Han and Kunhao Zheng and Ya Zhang and Weidi Xie},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2022}
}