Awesome
Prompting Visual-Language Models for Efficient Video Understanding
Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, Weidi Xie. ECCV 2022.
[project page] [Arxiv] [Video]
<center><img src="figure/teasers.png" width="100%"></center>Get Started on HMDB51 (More datasets will be available soon)
Environment
- python >= 3.6.10
- pytorch >= 1.7.1
- tensorboardX
- einops
- tqdm
Data Preparation
-
Download the CLIP pre-trained features of HMDB51 from here.
Unzip the features, and put them under the ./feat folder.
-
Download the pre-train model of HMDB51 from here, put it under the ./models folder.
After the preparation work, the whole project should have the following structure:
This folder ├── README.md │ ... │ ├── feat │ └── HMDB │ ├── #2_Gum_chew_h_nm_np1_fr_med_0.npy │ ├── #2_Gum_chew_h_nm_np1_fr_med_1.npy │ | ... │ ├── models │ └── HMDB_best.pth.tar │ │ ...
Training
cd ./src
python main.py -j 8 --prefix 16 --postfix 16 --tfm_layers 1 --tfm_heads 8 --dataset HMDB51-feature-30fps-center --temporal 1 --batchsize 64 --lr 1e-4 --featnorm 1 --verbose Temp --num_iterations 1100 --save_iterations 55
Evaluation
cd ./src
python main.py -j 8 --prefix 16 --postfix 16 --tfm_layers 1 --tfm_heads 8 --dataset HMDB51-feature-30fps-center --temporal 1 --batchsize 64 --lr 1e-4 --featnorm 1 --verbose Temp --test path_to_checkpoint
[Optional] Evaluating with Our Pre-trained Model
cd ./src
python main.py -j 8 --prefix 16 --postfix 16 --tfm_layers 1 --tfm_heads 8 --dataset HMDB51-feature-30fps-center --temporal 1 --batchsize 64 --lr 1e-4 --featnorm 1 --verbose Temp --test ../models/HMDB_best.pth.tar
Reference
@inproceedings{ju2022prompting,
title={Prompting Visual-Language Models for Efficient Video Understanding}
author={Chen Ju and Tengda Han and Kunhao Zheng and Ya Zhang and Weidi Xie},
booktitle={European Conference on Computer Vision (ECCV)},
year={2022}
}