Home

Awesome

Topics in Computational Economics

John Stachurski

This is the home page of ECON-GA 3002, a PhD level course on computational economics to be held at NYU in the spring semester of 2016.

(Note: This document is preliminary and still under development)

Semi-Random quote

All this technology carries risk. There is no faster way for a trading firm to destroy itself than to deploy a piece of trading software that makes a bad decision over and over in a tight loop. Part of Jane Street's reaction to these technological risks was to put a very strong focus on building software that was easily understood--software that was readable.

-- Yaron Minsky, Jane Street

Table of Contents:

News

Please note that the lecture room has changed to room 5-75 in the Stern Building.

The time is unchanged: Friday 9am--11am

Please be sure to bring your laptop

References

Prerequisites

I assume that you have

If you would like to prepare for the course before hand please consider

Syllabus

Below is a sketch of the syllabus for the course. The details are still subject to some change.

Part I: Programming

Introduction

Coding Foundations

Core Python

Scientific Python I: SciPy and Friends

Scientific Python II: The Ecosystem

Julia

Part II: Comp Econ Foundations

Markov Dynamics I: Finite State

Functional Analysis

Markov Dynamics II: General State

Solving Forward Looking Models

Dynamic Programming

Part III: Applications

DP II: Applications and Extensions

Optimal Stopping

Coase's Theory of the Firm

Assessment

See lecture 1 slides.

Notes on Class Presentations

All students enrolled in the course must give a 20 minute presentation. The presentation can be on your class project or on a code library or algorithm in Julia or Python that you find interesting. Here are some suggestions:

Notes on the Class Project

You should discuss your class project at least briefly with me before you start. I am flexible about topics and mainly concerned with quality.

All projects are due by midnight on June 3rd.

Structure of the Project

A completed class project is a GitHub repository containing

Good projects demonstrate proficiency with

Random Ideas

Here are some very random ideas that I'll add to over the semester. The links are to papers, code or discussions of algorithms, quantitative work, etc. that could be implemented / replicated / improved using Python or Julia. Feel free to use or ignore. (Ideally you will find your own topic according to your own interests. Please discuss your topic with me either way).

Additional Resources

Vectorization: * http://blog.datascience.com/straightening-loops-how-to-vectorize-data-aggregation-with-pandas-and-numpy/

Good reads * http://undsci.berkeley.edu/article/cold_fusion_01 * https://msdn.microsoft.com/en-us/library/dn568100.aspx