Awesome
<p align="center"> <img width="460" src="https://user-images.githubusercontent.com/8075494/185400143-1b9494b7-f5ed-41ee-8a25-b0c82a27a638.png"> </p> <p align="center"> <strong>Online Algorithms for Statistics, Models, and Big Data Viz</strong> </p>- ⚡ High-performance single-pass algorithms for statistics and data viz.
- ➕ Updated one observation at a time.
- ✅ Algorithms use O(1) memory.
- 📈 Perfect for streaming and big data.
Docs | Build | Test | Citation | Dependents |
---|---|---|---|---|
🚀 Quickstart
import Pkg
Pkg.add("OnlineStats")
using OnlineStats
# Create several statistics
o = Series(Mean(), Variance(), Extrema())
# Update with single data point
fit!(o, 1.0)
# Iterate through and update with lots of data
fit!(o, randn(10^6))
# Get the values of the statistics
value(o) # (value(mean), value(variance), value(extrema))
<br>
📖 Documentation
<br>✨ Contributing
- Pull requests are very welcome!
- For major changes, you'll probably want to first discuss the changes via issue/email/slack with
@joshday
.
✏️ Authors
- Primary Author: Josh Day (@joshday)
- Significant early contributions from Tom Breloff (@tbreloff)
- Many algorithms developed under mentorship of Hua Zhou (@Hua-Zhou)
See also the list of contributors to OnlineStats.
<a href="https://github.com/joshday/onlinestats.jl/graphs/contributors"> <img src="https://contrib.rocks/image?repo=joshday/onlinestats.jl" /> </a>