Home

Awesome

VAE with a VampPrior

This is a PyTorch implementation of a new prior ("Variational Mixture of Posteriors" prior, or VampPrior for short) for the variational auto-encoder framework with one layer and two layers of stochastic hidden units as described in the following paper:

Requirements

The code is compatible with:

Data

The experiments can be run on the following datasets:

Run the experiment

  1. Set-up your experiment in experiment.py.
  2. Run experiment:
python experiment.py

Models

You can run a vanilla VAE, a one-layered VAE or a two-layered HVAE with the standard prior or the VampPrior by setting model_name argument to either: (i) vae or hvae_2level for MLP, (ii) convvae_2level for convnets, (iii) pixelhvae_2level for (ii) with a PixelCNN-based decoder, and specifying prior argument to either standard or vampprior.

Citation

Please cite our paper if you use this code in your research:

@article{TW:2017,
  title={{VAE with a VampPrior}},
  author={Tomczak, Jakub M and Welling, Max},
  journal={arXiv},
  year={2017}
}

Acknowledgments

The research conducted by Jakub M. Tomczak was funded by the European Commission within the Marie Skłodowska-Curie Individual Fellowship (Grant No. 702666, ”Deep learning and Bayesian inference for medical imaging”).